Answer:
Explanation:
From the given information:
We know that the thin spherical shell is on a uniform surface which implies that both the inside and outside the charge of the sphere are equal, Then
The volume charge distribution relates to the radial direction at r = R
∴



To find the constant k, we examine the total charge Q which is:


∴



Thus;




Hence, from equation (1), if k = 


To verify the units:

↓ ↓ ↓
c/m³ c/m³ × 1/m
Thus, the units are verified.
The integrated charge Q



since 

<h3><u>Answer;</u></h3>
electric potential
<h3><u>Explanation;</u></h3>
Electric potential is the electric potential energy per unit charge.
Mathematically; V =PE/q
Where; PE is the electric potential energy, V is the electric potential and q is the charge.
Electric potential is more commonly known as voltage. If you know the potential at a point, and you then place a charge at that point, the potential energy associated with that charge in that potential is simply the charge multiplied by the potential.
Power = Work Done / Time taken
Where Work Done is Joules, and Time is in Seconds, Power is in Watts
= 2400 J / 6 seconds
= 400 Watts
The power output is 400 Watts.
Fossil fuel are collected and turned into oils like car gas and many other products have fossil fuels in them and we don't even realize it idk oil was made out of fossils till i studied fossils in class Hope this helps:)
The bullet travels a horizontal distance of 276.5 m
The bullet is shot forward with a horizontal velocity
. It takes a time <em>t</em> to fall a vertical distance <em>y</em> and at the same time travels a horizontal distance <em>x. </em>
The bullet's horizontal velocity remains constant since no force acts on the bullet in the horizontal direction.
The initial velocity of the bullet has no component in the vertical direction. As it falls through the vertical distance, it is accelerated due to the force of gravity.
Calculate the time taken for the bullet to fall through a vertical distance <em>y </em>using the equation,

Substitute 0 m/s for
, 9.81 m/s²for <em>g</em> and 1.5 m for <em>y</em>.

The horizontal distance traveled by the bullet is given by,

Substitute 500 m/s for
and 0.5530s for t.

The bullet travels a distance of 276.5 m.