Answer: 30 m/s
Explanation:
Use the first kinematic equation for linear motion

To calculate the <span>δ h, we must balance first the reaction:
NO + 0.5O2 -----> NO2
Then we write all the reactions,
2O3 -----> 3O2 </span><span>δ h = -426 kj eq. (1)
O2 -----> 2O </span><span>δ h = 490 kj eq. (2)
NO + O3 -----> NO2 + O2 </span><span>δ h = -200 kj eq. (3)
We divide eq. (1) by 2, we get
</span>O3 -----> 1.5O2 δ h = -213 kj eq. (4)
Then, we subtract eq. (3) by eq. (4)
NO + O3 -----> NO2 + O2 δ h = -200 kj
- (O3 -----> 1.5 O2 δ h = -213 kj)
NO -----> NO2 - 0.5O2 δ h = 13 kj eq. (5)
eq. (2) divided by -2. (Note: Dividing or multiplying by negative number reverses the reaction)
O -----> 0.5O2 <span>δ h = -245 kj eq. (6)
</span>
Add eq. (6) to eq. (5), we get
NO -----> NO2 - 0.5O2 δ h = 13 kj
+ O -----> 0.5O2 δ h = -245 kj
NO + O ----> NO2 δ h = -232 kj
<em>ANSWER:</em> <em>NO + O ----> NO2 δ h = -232 kj</em>
Answer:
0.38
Explanation:
Molar mass of thiophene= 84g/mol
Mass of thiophene = 37g
Number of moles= 37/84= 0.44 moles
Molar mass of heptane= 100 g/mol
Mass of heptane = 72g
Number of moles = 72/100= 0.72 moles
Total number of moles= 0.44 + 0.72= 1.16 moles
mole fraction of thiophene = 0.44/1.16= 0.38
You can answer this question by only searching the element in the periodic table.
The atomic number of iodine, I, is 53. It is placed in the column 17 (this is the Group) and row 5 (this is the Period).
The conclusion is that the iodine is located in Period 5, Group 17, and is classified as a nonmetal.
Answer:
4 L
Explanation:
Ideal gas law is P1V1T2=P2V2T1
V2=P1V1/P2
T is not necessary to add since it is constant.