Elements in the same group have D. Same number of valence electrons.
Models help us better understand the phenomena
Answer:
Explanation:
(NH4)3 PO4 +NaOH arrow Na3PO4 +3NH3 +3H2O
Start by seeing what happens with the Na. You need 3 on the left, so put a 3 in front of NaOH
(NH4)3 PO4 +3NaOH arrow Na3PO4 +3NH3 +3H2O Next work with the nitrogens. YOu have 3 on the left and 3 on the right, so they are OK. Next Go to the stray oxygens.
You have 3 on left in (NaOH) and three on the right in 3H2O so they are fine as well. The last thing you should look at are hydrogens.
There are 12 + 3 on the left which is 15. There are 9 (in 3NH3) and 6 more in the water. They seem fine.
Why didn't I do something with the PO4^(-3)? The reason is a deliberately stayed away from them and balanced everything else. Since they were untouched with 1 on the left and 1 on the right, they are balanced.
Species Na H O N PO4
Left 3 15 3 3 1
Right 3 15 3 3 1
Answer:
Fluorine has an electronegativity of 4, which is the highest an element has. Makes it a pretty dangerous substance to work with
Answer:
Explanation:
You are not really helped by what is hold the liquid. Beakers and cylinders come on a lot of sizes. I hate to be crabby about things like that, but you really need to be aware that the question is slightly flawed (not your fault).
The beaker, you'd be like to get 1 sig digit. You have to be awfully careful about claiming more. So the and is 50 mL, but that mL is a guess and the 50 is not totally accurate, but what would you say the second digit is? 48 or 47? You don't really know. Maybe even 49.
The graduated cylinder is a little better. Read the bottom of the meniscus (the bottom of the 1/2 bubble). I think you can get 2 sig digs., so the answer is 36 mL. But everything also depends on what you have been told.