Answer:
Explanation:
Inductance L = 1.4 x 10⁻³ H
Capacitance C = 1 x 10⁻⁶ F
a )
current I = 14 .0 t
dI / dt = 14
voltage across inductor
= L dI / dt
= 1.4 x 10⁻³ x 14
= 19.6 x 10⁻³ V
= 19.6 mV
It does not depend upon time because it is constant at 19.6 mV.
b )
Voltage across capacitor
V = ∫ dq / C
= 1 / C ∫ I dt
= 1 / C ∫ 14 t dt
1 / C x 14 t² / 2
= 7 t² / C
= 7 t² / 1 x 10⁻⁶
c ) Let after time t energy stored in capacitor becomes equal the energy stored in capacitance
energy stored in inductor
= 1/2 L I²
energy stored in capacitor
= 1/2 CV²
After time t
1/2 L I² = 1/2 CV²
L I² = CV²
L x ( 14 t )² = C x ( 7 t² / C )²
L x 196 t² = 49 t⁴ / C
t² = CL x 196 / 49
t = 74.8 μ s
After 74.8 μ s energy stored in capacitor exceeds that of inductor.
Mass of the block = 1.4 kg
Weight of the block = mg = 1.4 × 9.8 = 13.72 N
Normal force from the surface (N) = 13.72 N
Acceleration = 1.25 m/s^2
Let the coefficient of kinetic friction be μ
Friction force = μN
F(net) = ma
μmg = ma
μg = a
μ = 
μ = 
μ = 0.1275
Hence, the coefficient of kinetic friction is: μ = 0.1275
Recall this gas law:
= 
P₁ and P₂ are the initial and final pressures.
V₁ and V₂ are the initial and final volumes.
T₁ and T₂ are the initial and final temperatures.
Given values:
P₁ = 475kPa
V₁ = 4m³, V₂ = 6.5m³
T₁ = 290K, T₂ = 277K
Substitute the terms in the equation with the given values and solve for Pf:

<h3>P₂ = 279.2kPa</h3>
Answer:
The work done in winding the spring gets stored in the wound up spring in the form of elastic potential energy (i.e potential energy due to change in shape). ... During this process, the potential energy stored in it gets converted to kinetic energy. This turns the wheels of the toy car.
Explanation:
The force and the air resistance depends on the mechanical enserfy.