1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Len [333]
3 years ago
13

Which statement is WRONG?

Engineering
1 answer:
worty [1.4K]3 years ago
7 0

Answer:the first is wrong because the s

Explanation:

the second is fake

You might be interested in
A rectangular car-top carrier of 1.7-ft height, 5.0-ft length (front to back), and 4.2-ft width is attached to the top of a car.
Nataliya [291]

Answer:

\Delta P =1.2 \frac{1.3}{2}(26.822m/s)^2 (4.2*1.7*(0.3048)^2)=13.88 hp

Explanation:

We can assume that the general formula for the drag force is given by:

D= C_D \frac{\rho}{2}V^2 A

And we can see that is proportional to the area. On this case we can calculate the area with the product of the width and the height. And we can express the grad force like this:

D_1 = C_{D1} \frac{\rho}{2}V^2 (wh)

Where w is the width and h the height.

The last formula is without consider the area of the carrier, but if we use the area for the carrier we got:

D_2 = C_{D2} \frac{\rho}{2}V^2 (wh+ A_{carrier})

If we want to find the additional power added with the carrier we just need to take the difference between the multiplication of drag force by the velocity (assuming equal velocities for both cases) of the two cases, and we got:

\Delta P = C_{D2} \frac{\rho}{2}V^2 (wh+ A_{carrier}) V-  C_{D1} \frac{\rho}{2}V^2 (wh) V

We can assume the same drag coeeficient C_{D1}=C_{D2}=C_{D} and we got:

\Delta P = C_{D} \frac{\rho}{2}V^2 (wh+ A_{carrier}) V-  C_{D} \frac{\rho}{2}V^2 (wh) V

\Delta P = C_{D} \frac{\rho}{2}V^3 (A_{carrier})

1.7 ft =0.518 m

60 mph = 26.822 m/s

In order to find the drag coeffcient we ned to estimate the Reynolds number first like this:

R_E= \frac{Vl}{v}= \frac{26.822m/s*0.518 m}{1.58x10^{-4} Pa s}= 8.79 x10^{4}

And the value for the kinematic vicosity was obtained from the table of physical properties of the air under standard conditions.

Now we can find the aspect ratio like this:

\frac{l}{h}=\frac{5}{1.7}2.941

And we can estimate the calue of C_D = 1.2 from a figure.

And we can calculate the power difference like this:

\Delta P =1.2 \frac{1.3}{2}(26.822m/s)^2 (4.2*1.7*(0.3048)^2)=13.88 hp

8 0
3 years ago
What is a voltage divider circuit and how do you calculate the voltage across one element in a series
Rama09 [41]
Sorry I don’t know myself
6 0
3 years ago
What financial arguments could you use to justify your proposed
Gnoma [55]

The recommendation to segregate FLTs and the workers are as follows:-1)Reputation of warehouse:- To be in the market the reputation of warehouse should be good,it can only happen when the worker of that warehouse is happy with the management looks after worker external and internal affairs. There should be two pathways one for vehicle and other for walking in which both can’t use vice versa.2)High Profitability:- When there is no incident or accident happens between the FLTs and the workers in the warehouse then off course the worker will be regular at work then there will be high profit .3)Insurance premium:- If there is zero accident happens in the ware house then there will no claim, the company will be in the profit..

7 0
3 years ago
The Environmental Protection Agency (EPA) has standards and regulations that says that the lead level in soil cannot exceed the
DENIUS [597]

Answer:

See below

Explanation:

<u>Check One-Sample T-Interval Conditions</u>

Random Sample? √

Sample Size ≥30? √

Independent? √

Population Standard Deviation Unknown? √

<u>One-Sample T-Interval Information</u>

  • Formula --> CI=\bar{x}\pm t^*(\frac{S_x}{\sqrt{n}})
  • Sample Mean --> \bar{x}=390.25
  • Critical Value --> t^*=2.0096 (given df=n-1=50-1=49 degrees of freedom at a 95% confidence level)
  • Sample Size --> n=50
  • Sample Standard Deviation --> S_x=30.5

<u>Problem 1</u>

The critical t-value, as mentioned previously, would be t^*=2.0096, making the 95% confidence interval equal to CI=\bar{x}\pm t^*(\frac{S_x}{\sqrt{n}})=390.25\pm2.0096(\frac{30.5}{\sqrt{50}})\approx\{381.5819,398.9181\}

This interval suggests that we are 95% confident that the true mean levels of lead in soil are between 381.5819 and 398.9181 parts per million (ppm), which satisfies the EPA's regulated maximum of 400 ppm.

3 0
2 years ago
Any one here play animal crossing new horizons<br> if so wanna play
Oksanka [162]

Answer:

That's your Q seriously. Your funny. I don't have animal crossing but I do have league of legends.

Explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • A steel ship deck plate is 30 mm thick and 12 m wide. It is loaded with a nominal uni- axial tensile stress of 70 MPa. It is ope
    13·1 answer
  • Why do side airbags say inflated for several seconds
    8·2 answers
  • Estimate the theoretical fracture strength of a brittle material if it is known that fracture occurs by the propagation of an el
    10·2 answers
  • Identify the five protective factors
    10·2 answers
  • Sharon is designing a house in an area that receives a lot of rainfall all year. Which material should she use to stick the wood
    12·1 answer
  • In a semiconductor manufacturing process, three wafers from a lot are tested. Each wafer is classified as pass or fail. Assume t
    15·1 answer
  • Steam at 6 MPa and 5008C enters a two-stage adiabatic turbine at a rate of 15 kg/s. 10 percent of the steam is extracted at the
    5·1 answer
  • Technician A says that the distributor cap provides a connection point between the rotor and each individual cylinder plug wire.
    10·1 answer
  • What should you use to keep battery terminals from corroding
    12·1 answer
  • Which of the following are examples of engineering controls? Select all that apply.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!