1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergejj [24]
3 years ago
12

A rectangular car-top carrier of 1.7-ft height, 5.0-ft length (front to back), and 4.2-ft width is attached to the top of a car.

Estimate the additional power required to drive the car with the carrier at 60 mph through still air compared with the power required to driving only the car at 60 mph. Assume that CD.
Engineering
1 answer:
Nataliya [291]3 years ago
8 0

Answer:

\Delta P =1.2 \frac{1.3}{2}(26.822m/s)^2 (4.2*1.7*(0.3048)^2)=13.88 hp

Explanation:

We can assume that the general formula for the drag force is given by:

D= C_D \frac{\rho}{2}V^2 A

And we can see that is proportional to the area. On this case we can calculate the area with the product of the width and the height. And we can express the grad force like this:

D_1 = C_{D1} \frac{\rho}{2}V^2 (wh)

Where w is the width and h the height.

The last formula is without consider the area of the carrier, but if we use the area for the carrier we got:

D_2 = C_{D2} \frac{\rho}{2}V^2 (wh+ A_{carrier})

If we want to find the additional power added with the carrier we just need to take the difference between the multiplication of drag force by the velocity (assuming equal velocities for both cases) of the two cases, and we got:

\Delta P = C_{D2} \frac{\rho}{2}V^2 (wh+ A_{carrier}) V-  C_{D1} \frac{\rho}{2}V^2 (wh) V

We can assume the same drag coeeficient C_{D1}=C_{D2}=C_{D} and we got:

\Delta P = C_{D} \frac{\rho}{2}V^2 (wh+ A_{carrier}) V-  C_{D} \frac{\rho}{2}V^2 (wh) V

\Delta P = C_{D} \frac{\rho}{2}V^3 (A_{carrier})

1.7 ft =0.518 m

60 mph = 26.822 m/s

In order to find the drag coeffcient we ned to estimate the Reynolds number first like this:

R_E= \frac{Vl}{v}= \frac{26.822m/s*0.518 m}{1.58x10^{-4} Pa s}= 8.79 x10^{4}

And the value for the kinematic vicosity was obtained from the table of physical properties of the air under standard conditions.

Now we can find the aspect ratio like this:

\frac{l}{h}=\frac{5}{1.7}2.941

And we can estimate the calue of C_D = 1.2 from a figure.

And we can calculate the power difference like this:

\Delta P =1.2 \frac{1.3}{2}(26.822m/s)^2 (4.2*1.7*(0.3048)^2)=13.88 hp

You might be interested in
What is the IMA of this pulley belt system if the diameter of the input
Stella [2.4K]

Answer:

2.8

Explanation:

The ideal mechanical advantage of the pulley IMA  = D'/D where D' = diameter of output pulley = 7 inches and D = diameter of input pulley = 2.5 inches

So, IMA = D'/D

= 7/2.5

= 2.8

So, the ideal mechanical advantage of the pulley IMA = 2.8

8 0
3 years ago
Motor oil is responsible for
Lelechka [254]

Answer:

lubricating all moving parts in the engine

Explanation:

like the pistons, pushrods, and the crank

5 0
3 years ago
A distribution center is used in which of the following applications?
FrozenT [24]

both b and c are the right

5 0
3 years ago
A hot brass plate is having its upper surface cooled by impinging jet of air at temperature of 15°C and convection heat transfer
gulaghasi [49]

Answer:

809.98°C

Explanation:

STEP ONE: The first step to take in order to solve this particular Question or problem is to find or determine the Biot value.

Biot value = (heat transfer coefficient × length) ÷ thermal conductivity.

Biot value = (220 × 0.1)÷ 110 = 0.2.

Biot value = 0.2.

STEP TWO: Determine the Fourier number. Since the Biot value is greater than 0.1. Tis can be done by making use of the formula below;

Fourier number = thermal diffusivity × time ÷ (length)^2.

Fourier number = (3 × 60 × 33.9 × 10^-6)/( 0.1)^2 = 0.6102.

STEP THREE: This is the last step for the question, here we will be calculating the temperature of the center plane of the brass plate after 3 minutes.

Thus, the temperature of the center plane of the brass plane after 3 minutes = (1.00705) (0.89199) (900- 15) + 15.

= > the temperature of the center plane of the brass plane after 3 minutes = 809.98°C.

5 0
3 years ago
technician a uses a current output test to check ac generator output. technician b uses a voltage output test to check output. w
expeople1 [14]

Answer:

both

Explanation:

Both the technician are correct, ac generator output can be tested in both ways. The two ways are  current output test to check ac generator output. and  voltage output test to check output.

7 0
3 years ago
Other questions:
  • Is it more difficult to pump oil from a well on dry land or a well under water?Why?
    11·1 answer
  • Why dues brainy exist as a learning platform when it is just full of answers and you won't learn anything?
    8·1 answer
  • In a flow over a flat plate, the Stanton number is 0.005: What is the approximate friction factor for this flow a)- 0.01 b)- 0.0
    8·1 answer
  • Air, at a free-stream temperature of 27.0°C and a pressure of 1.00 atm, flows over the top surface of a flat plate in parallel f
    13·1 answer
  • Which battery produces more volts per cell, maintenance type or maintenance free ?
    6·1 answer
  • A jointed arm robot can rotate on the following 6 axes?
    8·1 answer
  • Why does the compression-refrigeration cycle have a high-pressure side and a low-pressure side?
    7·1 answer
  • Concerning the storage battery, what category of the primary sources is voltage produced?​
    13·1 answer
  • At time t the resultant force on a particle, of mass 250kg is (300ti-400tj)N. Initially, the particle is at the origin and is mo
    6·1 answer
  • Is reinforcement needed in a retaining wall
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!