Answer:
B) 200 [J]
Explanation:
In order to solve this problem we must remember the definition of work which tells us that it is equal to the product of force by a distance, in this case, the force is the weight of the ball. The distance traveled is 4 [m] since 6-2 = 4[m]
F = m*g
where:
m = mass = 5 [kg]
g = gravity acceleration = 10 [m/s^2]
F = 5*10 = 50 [N]
w = F*d
where:
F = force = 50 [N]
d = 4 [m]
w = 50*4 = 200 [J]
Answer:
<h2>35.56 m/s²</h2>
Explanation:
The acceleration of an object given it's velocity and time taken can be found by using the formula

v is the velocity
t is the time
From the question we have

We have the final answer as
<h3>35.56 m/s²</h3>
Hope this helps you
Answer:Rolling friction is friction that acts on objects when they are rolling over a surface. Rolling friction is much weaker than sliding friction or static friction. This explains why most forms of ground transportation use wheels, including bicycles, cars, 4-wheelers, roller skates, scooters, and skateboards.
Explanation:
Given: Please see the attached image below.
To be able to
subtract vectors, we can either use the parallelogram method or the triangle
method. Take note that the only difference is that alternatively adding vectors
A and B, we will instead be adding A and – B. When we ponder of vector subtraction, we must
anticipate about it in terms of adding a negative vector. A negative vector has the same magnitude as the
original vector, however, it has an opposite direction.
So in this problem, the two vectors that will have the
largest magnitude are A & F when subtracted (i.e., when one vector is
subtracted from the other).
It depends what is the position of earth and saturn. Distance from earth to saturn varies depending on whether earth is between sun and saturn or sun is between earth and saturn. Obviously, the shortest distance will be if earth is between sun and saturn. we will take that the distance between earth and saturn is:
s = 1 275 000 000 km
The time required to travel that distance is:
t = s/v = 45535 hours or 1897.3 days