Answer:
People can introduce their own biases into an experiment.
Explanation:
Answer is: the percent composition of Hg in the compound is 71.5%.
Balanced chemical reaction: Hg + Br₂ → HgBr₂.
m(Hg) = 60.2 g; mass of the mercury.
m(Br₂) = 24.0; mass of the bromine.
m(HgBr₂) = m(Hg) + m(Br₂).
m(HgBr₂) = 60.2 g + 24 g.
m(HgBr₂) = 84.2 g; mass of the compound.
ω(Hg) = m(Hg) ÷ m(HgBr₂) · 100%.
ω(Hg) = 60.2 g ÷ 84.2 g · 100%.
ω(Hg) = 71.5%.
3.01 Ă— 10^24 Ă— (12/5) hydrogen atoms
Looking at the formula for the molecule, the ratio of carbon to hydrogen atoms is 5:12, so if we divide the number of carbon atoms by 5 and then multiply by 12, we can find the number of hydrogen atoms. Let's look at the available options and see what makes sense.
3.01 Ă— 10^24 Ă— (12/5) hydrogen atoms
* This is exactly correct.
(3.01 Ă— 10^24 / 5) hydrogen atoms
* Nope. This will tell you how many pentane MOLECULES you have, but not the number of hydrogen atoms.
3.01 Ă— 10^24 Ă— (5/12) hydrogen atoms
* Close, but the ratio (5/12) will tell you the number of carbon atoms you have if you give it the number of hydrogen atoms. So this choice is wrong.
3.01 Ă— 10^24 Ă— 12 hydrogen atoms description
* This would tell you the number of hydrogen atoms you have if you know the number of pentane molecules you have. So this choice is also wrong.
B. Share Electrons.
Hope this helps.
Only fe (iron) is in the group b of elements