The value of the force, F₀, at equilibrium is equal to the horizontal
component of the tension in string 2.
Response:
- The value of F₀ so that string 1 remains vertical is approximately <u>0.377·M·g</u>
<h3>How can the equilibrium of forces be used to find the value of F₀?</h3>
Given:
The weight of the rod = The sum of the vertical forces in the strings
Therefore;
M·g = T₂·cos(37°) + T₁
The weight of the rod is at the middle.
Taking moment about point (2) gives;
M·g × L = T₁ × 2·L
Therefore;

Which gives;


F₀ = T₂·sin(37°)
Which gives;

<u />
Learn more about equilibrium of forces here:
brainly.com/question/6995192
P U S S Y
<span>Joy is planning to purchase a sweater that costs $30 dollars at her local department store. The sweaters are on sale for 20% off. Which steps are needed to find the sale price of the sweater?</span>
Explanation:
Given that,
The voltages across them are 40,50 and 60 volts respectively, and the charge on each condenser is 6×10⁻⁸ C.
(a) Capacitance of capacitor 1,

Capacitance of capacitor 2,

Capacitance of capacitor 3,

(b) The equivalent capacitance in series combination is :

Hence, this is the required solution.
<h3>Answer</h3>
(A) Resistance is directly related to length.
<h3>Explanation</h3>
Formula for resistance
R = p(length) / A
where R = resistance
p = resistivity(material of wire)
A = cross sectional area
So it can be seen that resistance depends upon 3 factors that are length of wire , resistivity of wire and the cross sectional area of the wire.
If two of the factors, resistivity and cross sectional area, are kept constant then the resistance is directly proportional to the length of wire.
<h3> R ∝ length</h3>
This means that the resistance of the wire increases with the increase in length of the wire and decreases with the decrease of length of the wire.