Use PV = nRT
(2 atm)(.3 liters) = n(8.314 mol*K)(303°K)
.6 = n(2519.142)
Divide by 2519.142
n = .00023818 mols of HCl * 36.46g of HCl/ 1 mol of HCl
Grams of HCl = 0.00868

☃️ Chemical formulae ➝ 
How to find?
For solving this question, We need to know how to find moles of solution or any substance if a certain weight is given.

Solution:
❍ Molecular weight of 
= 2 × 126.90
= 253.80
= 254 (approx.)
❍ Given weight: 12.7
Then, no. of moles,
⇛ No. of moles = 12.7 / 254
⇛ No. of moles = 0.05 moles
⚘ No. of moles of Iodine molecule in the given weight = <u>0.05</u><u> </u><u>moles </u>
<u>━━━━━━━━━━━━━━━━━━━━</u>
summer college community of college students high education community high schools provide education and education high schools community education of children high jevs human services is work to community city philadelphian workers to provide high-quality
Answer:
The reaction is endothermic.
Explanation:
Heat is absorbed in endothermic reactions. An endothermic process is any process which requires or absorbs energy from its surroundings, usually in the form of heat. It may be a chemical process, such as dissolving ammonium nitrate in water, or a physical process, such as the melting of ice cubes (wikipedia)
Standard Enthalpy of Reaction (ΔHrxn) is the amount of heat absorbed (+ΔH value) or released (-ΔH value) that results from a chemical reaction.
Answer:

Explanation:
Hello,
In this case, given the amounts of water and carbon dioxide we should invert the given reaction as hydrogen will be producted rather than consumed:

Consequently, the equilibrium constant is also inverted:

In such a way, we can now propose the law of mass action:
![Kc'=\frac{[H_2][CO_2]}{[H_2O][CO]}](https://tex.z-dn.net/?f=Kc%27%3D%5Cfrac%7B%5BH_2%5D%5BCO_2%5D%7D%7B%5BH_2O%5D%5BCO%5D%7D)
And we can express it in terms of the initial concentrations of the reactants and the change
due to the reaction extent:
![Kc'=\frac{(x)(x)}{([H_2O]_0-x)([CO]_0-x)}=1.87](https://tex.z-dn.net/?f=Kc%27%3D%5Cfrac%7B%28x%29%28x%29%7D%7B%28%5BH_2O%5D_0-x%29%28%5BCO%5D_0-x%29%7D%3D1.87)
Thus, we compute the initial concentration which are same, since equal amount of moles are given:
![[H_2O]_0=[CO]_0=\frac{0.680mol}{70.0L}=0.0097M](https://tex.z-dn.net/?f=%5BH_2O%5D_0%3D%5BCO%5D_0%3D%5Cfrac%7B0.680mol%7D%7B70.0L%7D%3D0.0097M)
Hence, solving for
by using the quardratic equation or solver, we obtain:

For which the correct value is 0.00561M since the other one will produce negative concentrations of water and carbon monoxide at equilibrium. Therefore, the number of moles of hydrogen at equilibrium for the same 70.0-L container turn out:

Best regards.