Answer:
The specific heat capacity of the metal is 0.268 J/g°C
Explanation:
Step 1: Data given
Mass of the metal = 151.5 grams
The temperature of the metal = 75.0 °C
Temperature of water = 15.1 °C
The temperature of the water rises to 18.7°C.
The specific heat capacity of water is 4.18 J/°C*g
Step 2: Calculate the specific heat capacity of the metal
heat lost = heat gained
Q = m*c*ΔT
Qmetal = - Qwater
m(metal) * c(metal) * ΔT(metal) = m(water) * c(water) * ΔT(water)
⇒ mass of the metal = 151.5 grams
⇒ c(metal) = TO BE DETERMINED
⇒ΔT( metal) = T2 - T1 = 18.7 °C - 75.0 °C = -56.3 °C
⇒ mass of the water = 151.5 grams
⇒ c(water) = 4.184 J/g°C
⇒ ΔT(water) = 18.7° - 15.1 = 3.6 °C
151.5g * c(metal) * -56.3°C = 151.5g * 4.184 J/g°C * 3.6 °C
c(metal) = 0.268 J/g°C
The specific heat capacity of the metal is 0.268 J/g°C
Answer:
34.3 g
Explanation:
Step 1: Write the balanced equation
2 CH₃CH₂OH ⇒ CH₃CH₂OCH₂CH₃ + H₂O
Step 2: Calculate the moles corresponding to 50.0 g of CH₃CH₂OH
The molar mass of CH₃CH₂OH is 46.07 g/mol.
50.0 g × 1 mol/46.07 g = 1.09 mol
Step 3: Calculate the theoretical moles of CH₃CH₂OCH₂CH₃ produced
The molar ratio of CH₃CH₂OH to CH₃CH₂OCH₂CH₃ is 2:1. The moles of CH₃CH₂OCH₂CH₃ theoretically produced are 1/2 × 1.09 mol = 0.545 mol.
Step 4: Calculate the real moles of CH₃CH₂OCH₂CH₃ produced
The percent yield of the reaction is 85%.
0.545 mol × 85% = 0.463 mol
Step 5: Calculate the mass corresponding to 0.463 moles of CH₃CH₂OCH₂CH₃
The molar mass of CH₃CH₂OCH₂CH₃ is 74.12 g/mol.
0.463 mol × 74.12 g/mol = 34.3 g
Answer is: C) the fact that the number of lone pairs of electrons on the central atom is greater in the case of water.
Carbon(IV) oxide is nonpolar because CO₂ is linear molecule and the oxygen atoms are symmetrical (bond angles 180°).
Water is polar because of the bent shape of the molecule.
Oxygen atom in water molecule has sp3 hybridization. The bond angle between the two hydrogen atoms is approximately 104.45°.
Oxygen atom has atomic number 8, it means it has eight protons and eight electrons, so atom has neutral charge. Oxygen is a nonmetal.
Electron configuration of oxygen atom: ₈O 1s² 2s² 2p⁴.
Oxygen atom has six valence electrons
, two lone pairs and two electrons that form two sigma bonds with hydrogen atoms.
Carbon is a chemical element with symbol C and atomic number 6, which means it has 6 protons and six electrons. Four valence electrons are in 2s and 2p orbitals.
Electron configuration of carbon atom: ₆C 1s² 2s² 2p².
In carbon dioxide, carban has sp hybridization with no lone pairs.