One's body movement to the side when a car makes a sharp turn. Tightening of seat belts in a car when it stops quickly. A ball rolling down a hill will continue to roll unless friction or another force stops it.
Answer:
B. the atomic weight of the element
Explanation:
since it talks about mass i think weight
Answer:
The answer to your question is 0.269 g of Pb
Explanation:
Data
Lead solution = 0.000013 M
Volume = 100 L
mass = 0.269 g
atomic mass Pb = 207.2 g
Chemical reaction
2Pb(s) + O₂(aq) + 4H⁺(aq) → 2H₂O(l) + 2Pb₂⁺(aq)
Process
1.- Calculate the mass of Pb in solution
Formula
Molarity = 
Solve for number of moles
Number of moles = Volume x Molarity
Substitution
Number of moles = 100 x 0.000013
Number of moles = 0.0013
2.- Calculate the mass of Pb formed.
207.2 g of Pb ----------------- 1 mol
x g ----------------- 0.0013 moles
x = (0.0013 x 207.2) / 1
x = 0.269 g of Pb
Using Avogadros number, we can get that 1 mole of an atom
contain 6.022 x 10^23 atoms. Therefore we can use this conversion factor to get
the number of moles:
moles ZnCO3 = 6.11 x 10^22 atoms * (1 mole / 6.022 x 10^23
atoms) = 0.10146 moles
The molar mass of ZnCO3 is about 125.39 g/mol, therefore the
mass is:
mass ZnCO3 = 0.10146 moles * (125.39 g / mol)
<span>mass ZnCO3 = 12.72 g</span>