We are given that the wavelength ʎ is from 400 nm to 700
nm. The formula for this is:
d sin a =m * ʎ
where,
d = slit separation = 1 mm / 750 lines = 1/750
a = angle
m = 1
ʎ = 400 nm to 700 nm = 0.0004 mm to 0.0007 mm
Rewriting the formula in terms of angle a:
a = sin^-1 (m ʎ / d)
when ʎ = 0.0004 mm
a = sin^-1 (0.0004 / (1/750))
a = 17.46°
when ʎ = 0.0007 mm
a = sin^-1 (0.0007 / (1/750))
a = 31.67°
Hence the range of angles is from 17.46° to 31.67<span>°.</span>
Answer: A) O N
Explanation:
An object in motion will maintain its state of motion. The presence of an unbalanced force changes the velocity of the object.
Answer:
1) The net electric field at any location inside a block of copper is zero if the copper block is in equilibrium.
2) In equilibrium, there is no net flow of mobile charged particles inside a conductor.
3) If the net electric field at a particular location inside a piece of metal is not zero, the metal is not in equilibrium.
Explanation:
1) and 3) A block of copper is a conductor. The charged particles on a conductor in equilibrium are at rest, so the intensity of the electric field at all interior points of the conductor is zero, otherwise, the charges would move resulting in an electric current.
2) The charged particles on a conductor in equilibrium are at rest.
Answer:
The general equation for conservation of momentum during a collision between n number of objects is given as: [m i ×v i a ] = [m i ×v i b ] Where m i is the mass of object i , v i a is the velocity of object i before the collision, and v i b is the velocity of object i after the collision.
Explanation: