Answer:
B. Element
Explanation:
Tungsten is an chemical element
hey mate here is ur answer
solution
mass{m}=3 gram
=3/1000
volume{v}=16cm
=16/100
density=m/v
=3/1000÷16/100
=3/160
=0.01875kg/m3
Answer:
1.37 × 10²³ Atoms of Mercury
Solution:
Step 1: Calculate Mass of Mercury using following formula,
Density = Mass ÷ Volume
Solving for Mass,
Mass = Density × Volume
Putting values,
Mass = 13.55 g.cm⁻³ × 3.4 cm³ ∴ 1 cm³ = 1 cc
Mass = 46.07 g
Step 2: Calculating number of Moles using following formula;
Moles = Mass ÷ M.mass
Putting values,
Moles = 46.07 g ÷ 200.59 g.mol⁻¹
Moles = 0.229 mol
Step 3: Calculating Number of Atoms using following formula;
Number of atoms = Moles × 6.022 ×10²³
Putting value of moles,
Number of Atoms = 0.229 mol × 6.022 × 10²³
Number of Atoms = 1.37 × 10²³ Atoms of Hg
Answer:
T° freezing solution → -11.3°C
T° boiling solution → 103.1 °C
Explanation:
Assuming 100 % dissociation, we must find the i, Van't Hoff factor which means "the ions that are dissolved in solution"
This salt dissociates as this:
SnCl₄ (aq) → 1Sn⁴⁺ (aq) + 4Cl⁻ (aq) (so i =5)
The formula for the colligative property of freezing point depression and boiling point elevation are:
ΔT = Kf . m . i
where ΔT = T° freezing pure solvent - T° freezing solution
ΔT = Kb . m . i
where ΔT = T° boiling solution - T° boiling pure solvent
Freezing point depression:
0° - T° freezing solution = 1.86°C/m . 1.22 m . 5
T° freezing solution = - (1.86°C/m . 1.22 m . 5) → -11.3°C
Boiling point elevation:
T° boiling solution - 100°C = 0.512 °C/m . 1.22 m . 5
T° boiling solution = (0.512 °C/m . 1.22 m . 5) + 100°C → 103.1 °C