Answer:
1.54 atm
Explanation:
By Dalton's Law Of partial pressure,
Total Pressure = Sum of all partial pressures
So,P= P1 + P2 + P3
Therefore, P=0.23+0.42+0.89
=1.54 atm
Oxygen can combine with a metal to produce a compound
You should clean up after every investigation because if you leave a mess, maybe another detective will come in and get lost because of the mess you left.
Mass CoCl2 = 10.27 g
moles CoCl2 = 10.27 g/ 129.839 g/mol=0.07910
mass water = 17.40 - 10.27=7.13 g
moles water = 7.13 / 18.02 g/mol=0.396
0.396/ 0.07910=5
CoCl2 * 5 H2O
moles CaF2 = 85.8 g/ 78.0748 g/mol=1.10
moles Ca = 1.10
mass Ca = 1.10 x 40.078 g/mol=44.1 g
V = 44.1 / 1.55 =28.5 mL
Greetings!!
Answer: The activation energy Ea for this reaction is 22689.8 J/mol
Explanation:
According to Arrhenius equation with change in temperature, the formula is as follows.
![ln \frac{k_{2}}{k_{1}} = \frac{-E_{a}}{R}[\frac{1}{T_{2}} - \frac{1}{T_{1}}]](https://tex.z-dn.net/?f=ln%20%5Cfrac%7Bk_%7B2%7D%7D%7Bk_%7B1%7D%7D%20%3D%20%5Cfrac%7B-E_%7Ba%7D%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_%7B2%7D%7D%20-%20%5Cfrac%7B1%7D%7BT_%7B1%7D%7D%5D)
= rate constant at temperature
= 
= rate constant at temperature
=
= activation energy = ?
R= gas constant = 8.314 J/kmol
= temperature = 
= temperature = 
Putting in the values ::
![ln \frac{4.8\times 10^8}{2.3\times 10^8} = \frac{-E_{a}}{8.314}[\frac{1}{649} - \frac{1}{553}]](https://tex.z-dn.net/?f=ln%20%5Cfrac%7B4.8%5Ctimes%2010%5E8%7D%7B2.3%5Ctimes%2010%5E8%7D%20%3D%20%5Cfrac%7B-E_%7Ba%7D%7D%7B8.314%7D%5B%5Cfrac%7B1%7D%7B649%7D%20-%20%5Cfrac%7B1%7D%7B553%7D%5D)

The activation energy Ea for this reaction is 22689.8 J/mol