Answer:
The amount of moles of Fe in 5.22*10²² atoms of Fe is 0.0867.
Explanation:
Avogadro's Number or Avogadro's Constant is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023*10²³ particles per mole. Avogadro's number represents a quantity without an associated physical dimension, so it is considered a pure number that allows describing a physical characteristic without an explicit dimension or unit of expression. Avogadro's number applies to any substance.
Then you can apply the following rule of three: if 6.023*10²³ atoms are contained in 1 mole, 5.22*10²² atoms are contained in how many moles?

amount of moles= 0.0867
<u><em>The amount of moles of Fe in 5.22*10²² atoms of Fe is 0.0867.</em></u>
Answer:
controlled by the Arabs, who brought frankincense and myrrh by camel caravan from South Arabia.
Explanation:
Defining law of definite proportions, it states that when two elements form more than one compound, the ratios of the masses of the second element which combine with a fixed mass of the first element will always be ratios of small whole numbers.
A. One of the oxides (Oxide 1) contains 63.2% of Mn.
Mass of the oxide = 100g
Mass of Mn = 63.2 g
Mass of O = 100 - 63.2
= 36.8 g
Ratio of Mn to O = 63.2/36.8
= 1.72
Another oxide (Oxide 2) contains 77.5% Mn.
Mass of oxide = 100 g
Mass of Mn = 77.5 g
Mass of O = 100 - 77.5
= 22.5 g
Ratio of Mn to O = 77.5/22.5
= 3.44
Therefore, the ratio of the masses of Mn and O in Oxide 1 and Oxide 2 is in the ratio 1.72 : 3.44, which is also 1 : 2. So the law of multiple proportions is obeyed.
B.
Oxide 1
Mass of Mn per 1 g of O = mass of Mn/mass of O
= 77.5/22.5
= 3.44 g/g of Oxygen.
Oxide 2
Mass of Mn per 1 g of O = mass of Mn/mass of O
= 77.5/22.5
= 3.44 g/g of Oxygen.
Your drawing looks so good :p