Answer:
1. 0.0154mole of PbS
2. Double displacement reaction
Explanation:
First, let write a balanced equation for the reaction. This is illustrated below:
Pb(CH3COO)2 + H2S —> PbS + 2 CH3COOH
Molar Mass of Pb(CH3COO)2 = 207 + 2(12 + 3 + 12 + 16 +16) = 207 + 2(59) = 207 + 118 = 325g
Mass of Pb(CH3COO)2 = 5g
Number of mole = Mass /Molar Mass
Number of mole of Pb(CH3COO)2 = 5/325 = 0.0154mole
From the equation,
1mole of Pb(CH3COO)2 produced 1mole of PbS.
Therefore, 0.0154mole of Pb(CH3COO)2 will also produce 0.0154mole of PbS
2. The name of the reaction is double displacement reaction since the ions in the two reactants interchange to form two different products
Answer:
Four
Explanation:
AlCl₃(aq) ⟶ Al³⁺(aq) + 3Cl⁻(aq)
One mole of AlCl₃ produces 1 mol of Al³⁺ and 3 mol of Cl⁻.
That's four moles of ions.
Answer:
Option E. 2.04 L
Explanation:
Data obtained from the question include:
Molarity of NaCl = 2.25 M
Mole of NaCl = 4.58 moles
Volume =..?
Molarity is simply defined as the mole of solute per unit litre of the solution. It is represented mathematically as:
Molarity = mole /Volume
With the above formula, we can obtain the volume of the solution as follow:
Molarity = mole /Volume
2.25 = 4.58/volume
Cross multiply
2.25 x volume = 4.58
Divide both side by 2.25
Volume = 4.58/2.25
Volume = 2.04 L
Therefore, the volume of the solution is 2.04 L
Answer:
Answer: 1.095 * 10^22 atoms of P.
Explanation:
Answer:
Explanation:
T1 = 150°C = (150 + 273.15)K = 423.15K
T2 = 45°C = (45 + 273.15)K = 318K
V1 = 693mL = 693cm³
Applying Charle's law, the volume of a given gas is directly proportional to is temperature provided that pressure remains constant.
V = kT
V1 / T1 = V2 / T2
693 / 423.15 = V2 / 318
V2 = (693 * 318) / 423.15 = 520.79cm³
The new volume of the gas is 520.79cm³