1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
spin [16.1K]
2 years ago
6

What should you release to re-establish vehicle control and tire traction?

Engineering
1 answer:
MrMuchimi2 years ago
6 0

Answer: The accelerator and the brakes.

You might be interested in
Refrigerant-134a enters the expansion valve of a refrigeration system at 120 psia as a saturated liquid and leaves at 20 psia. D
Shkiper50 [21]

Solution :

$P_1 = 120 \ psia$

$P_2 = 20 \ psia$

Using the data table for refrigerant-134a at P = 120 psia

$h_1=h_f=40.8365 \ Btu/lbm$

$u_1=u_f=40.5485 \ Btu/lbm$

$T_{sat}=87.745^\circ  F$

∴ $h_2=h_1=40.8365 \ Btu/lbm$

For pressure, P = 20 psia

$h_{2f} = 11.445 \ Btu/lbm$

$h_{2g} = 102.73 \ Btu/lbm$

$u_{2f} = 11.401 \ Btu/lbm$

$u_{2g} = 94.3 \ Btu/lbm$

$T_2=T_{sat}=-2.43^\circ  F$

Change in temperature, $\Delta T = T_2-T_1$

                                         $\Delta T = -2.43-87.745$

                                           $\Delta T=-90.175^\circ  F$

Now we find the quality,

$h_2=h_f+x_2(h_g-h_f)$

$40.8365=11.445+x_2(91.282)$

$x_2=0.32198$

The final energy,

$u_2=u_f+x_2.u_{fg}$

   $=11.401+0.32198(82.898)$

   $=38.09297 \ Btu/lbm$

Change in internal energy  

$\Delta u= u_2-u_1$

   = 38.09297-40.5485

  = -2.4556        

5 0
3 years ago
The speed of sound in a fluid can be calculated using the following equation:
wlad13 [49]

Answer:

Jesus is always the answer

4 0
3 years ago
A completely reversible heat pump produces heat ata rate of 300 kW to warm a house maintained at 24°C. Theexterior air, which is
Triss [41]

Answer:

Change in entropy S = 0.061

Second law of thermodynamics is satisfied since there is an increase in entropy

Explanation:

Heat Q = 300 kW

T2 = 24°C = 297 K

T1 = 7°C = 280 K

Change in entropy =

S = Q(1/T1 - 1/T2)

= 300(1/280 - 1/297) = 0.061

There is a positive increase in entropy so the second law is satisfied.

6 0
3 years ago
A spacecraft is fueled using hydrazine ​(N2H4​; molecular weight of 32 grams per mole​ [g/mol]) and carries 1 comma 630 kilogram
Varvara68 [4.7K]

Answer:

attached below

Explanation:

7 0
3 years ago
A lake has a carrying capacity of 10,000 fish. At the current level of fishing, 2,000 fish per year are taken with the catch uni
arlik [135]

Answer:

The population size would be p' = 5000

The yield would be    MaxYield = 2082 \ fishes \ per \ year

Explanation:

So in this problem we are going to be examining the application of a  population dynamics a fishing pond and stock fishing and objective would be to obtain the maximum sustainable yield and and the population of the fish at the obtained maximum sustainable yield,  so basically we would be applying an engineering solution to fishing

 

    So the current  yield which is mathematically represented as

                               \frac{dN}{dt} =   \frac{2000}{1 \ year }

 Where dN is the change in the number of fish

            and dt is the change in time

So in order to obtain the solution we need to obtain the  rate of growth

    For this we would be making use of the growth rate equation which is

                                      r = \frac{[\frac{dN}{dt}] }{N[1-\frac{N}{K} ]}

  Where N is the population of the fish which is given as 4,000 fishes

          and  K is the carrying capacity which is given as 10,000 fishes

             r is the growth rate

        Substituting these values into the equation

                              r = \frac{[\frac{2000}{year}] }{4000[1-\frac{4000}{10,000} ]}  =0.833

The maximum sustainable yield would be dependent on the growth rate an the carrying capacity and this mathematically represented as

                      Max Yield  = \frac{rK}{4} = \frac{(10,000)(0.833)}{4} = 2082 \ fishes \ per \ year

So since the maximum sustainable yield is 2082 then the the population need to be higher than 4,000 so in order to ensure a that this maximum yield the population size denoted by p' would be

                          p' = \frac{K}{2}  = \frac{10,000}{2}  = 5000\ fishes          

7 0
4 years ago
Read 2 more answers
Other questions:
  • 9) A construction company employs 2 sales engineers. Engineer 1 does the work in estimating cost for 70% of jobs bid by the comp
    11·1 answer
  • WILL MARK BRAINLEST PLEASE HELP
    10·1 answer
  • Assume that we have a BS with a 6-dB antenna gain and an MS with antenna gain of 2 dB, at heights 10 m and 1.5 m, respectively,
    5·1 answer
  • How to build a laser pointer?
    12·1 answer
  • In the 5 Code of Federal Regulations (C.F.R.), it is recommended that an individual has security awareness training before s/he
    8·2 answers
  • Stress that acts in the plane of a cut section, rather than at right angles to the section is called:_______
    6·1 answer
  • true or false: the types of building materials that’s should be used in a project does not constitute a conditional for projects
    13·2 answers
  • Who here likes to play project gotham racing?<br> will mark brainlyest
    8·2 answers
  • Their game off badminton is always on Tuesday
    11·1 answer
  • 1. A cylindrical casting is 0.3 m in diameter and 0.5 m in length. Another casting has the same metal is rectangular in cross-se
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!