1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dolphi86 [110]
2 years ago
11

Reese rides her bike 10 kilometers in 5 hours.Avery rides her bike 15 kilometers in 5 hours. Which girl rides her bike faster?​

Physics
2 answers:
ddd [48]2 years ago
4 0
The answer is Avery.
Elden [556K]2 years ago
3 0

Answer:

Avery

Explanation:

15 Kilometers is faster than 10 Kilometers

You might be interested in
How long will it take a 2190 W motor to lift a 1.47 x 104 g box, 6.34 x 104 mm vertically.​
Rasek [7]

Answer:

t = 4.17 [s]

Explanation:

We know that work is defined as the product of force by distance.

W = F*d

where:

F = force [N] (units of Newtons)

d = distance = 6.34 x 10⁴ [mm] = 63.4 [m]

In order to find the force, we must determine the weight of the box, the weight can be determined by means of the product of mass by gravitational acceleration.

w = m*g

where:

m = mass = 1.47 x 10⁴ [g] = 14.7 [kg]

g = gravity acceleration = 9.81 [m/s²]

w = 14.7*9.81

w = 144.2 [N]

Therefore the work can be calculated.

W = w*d

W = 144.2*63.4

W = 9142.72 [J] (units of Joules)

Power is now defined in physics as the relationship of work at a given time

P = W/t

where:

P = power = 2190 [W]

t = time [s]

Now clearing t, we have.

t = W/P

t = 9142.72/2190

t = 4.17 [s]

6 0
2 years ago
An electron and a proton each have a thermal kinetic energy of 3kBT/2. Calculate the de Broglie wavelength of each particle at a
S_A_V [24]

Answer:

Given:

Thermal Kinetic Energy of an electron, KE_{t} = \frac{3}{2}k_{b}T

k_{b} = 1.38\times 10^{- 23} J/k = Boltzmann's constant

Temperature, T = 1800 K

Solution:

Now, to calculate the de-Broglie wavelength of the electron, \lambda_{e}:

\lambda_{e} = \frac{h}{p_{e}}

\lambda_{e} = \frac{h}{m_{e}{v_{e}}              (1)

where

h = Planck's constant = 6.626\times 10^{- 34}m^{2}kg/s

p_{e} = momentum of an electron

v_{e} = velocity of an electron

m_{e} = 9.1\times 10_{- 31} kg = mass of electon

Now,

Kinetic energy of an electron = thermal kinetic energy

\frac{1}{2}m_{e}v_{e}^{2} = \frac{3}{2}k_{b}T

}v_{e} = \sqrt{2\frac{\frac{3}{2}k_{b}T}{m_{e}}}

}v_{e} = \sqrt{\frac{3\times 1.38\times 10^{- 23}\times 1800}{9.1\times 10_{- 31}}}

v_{e} = 2.86\times 10^{5} m/s                    (2)

Using eqn (2) in (1):

\lambda_{e} = \frac{6.626\times 10^{- 34}}{9.1\times 10_{- 31}\times 2.86\times 10^{5}} = 2.55 nm

Now, to calculate the de-Broglie wavelength of proton, \lambda_{e}:

\lambda_{p} = \frac{h}{p_{p}}

\lambda_{p} = \frac{h}{m_{p}{v_{p}}                             (3)

where

m_{p} = 1.6726\times 10_{- 27} kg = mass of proton

v_{p} = velocity of an proton

Now,

Kinetic energy of a proton = thermal kinetic energy

\frac{1}{2}m_{p}v_{p}^{2} = \frac{3}{2}k_{b}T

}v_{p} = \sqrt{2\frac{\frac{3}{2}k_{b}T}{m_{p}}}

}v_{p} = \sqrt{\frac{3\times 1.38\times 10^{- 23}\times 1800}{1.6726\times 10_{- 27}}}

v_{p} = 6.674\times 10^{3} m/s                               (4)                    

Using eqn (4) in (3):

\lambda_{p} = \frac{6.626\times 10^{- 34}}{1.6726\times 10_{- 27}\times 6.674\times 10^{3}} = 5.94\times 10^{- 11} m = 0.0594 nm

7 0
3 years ago
A beam of light, initially travelling in the air, strikes water surface at an angle of 24.5° with the normal. If the speed of li
kykrilka [37]

Answer:

Explanation:

n = 3.00e8/2.22e8 = 1.35

1.00sin24.5 = 1.35sinθ

θ = 17.9°

8 0
2 years ago
A 0.40 kg mass hangs on a spring with a spring constant of 12 N/m. The system oscillated with a constant amplitude of 12 cm. Wha
Vaselesa [24]

Answer:

The maximum acceleration of the system is 359.970 centimeters per square second.

Explanation:

The motion of the mass-spring system is represented by the following formula:

x(t) = A\cdot \cos (\omega \cdot t + \phi)

Where:

x(t) - Position of the mass with respect to the equilibrium position, measured in centimeters.

A - Amplitude of the mass-spring system, measured in centimeters.

\omega - Angular frequency, measured in radians per second.

t - Time, measured in seconds.

\phi - Phase, measured in radians.

The acceleration experimented by the mass is obtained by deriving the position equation twice:

a (t) = -\omega^{2}\cdot A \cdot \cos (\omega\cdot t + \phi)

Where the maximum acceleration of the system is represented by \omega^{2}\cdot A.

The natural frequency of the mass-spring system is:

\omega = \sqrt{\frac{k}{m} }

Where:

k - Spring constant, measured in newtons per meter.

m - Mass, measured in kilograms.

If k = 12\,\frac{N}{m} and m = 0.40\,kg, the natural frequency is:

\omega = \sqrt{\frac{12\,\frac{N}{m} }{0.40\,kg} }

\omega \approx 5.477\,\frac{rad}{s}

Lastly, the maximum acceleration of the system is:

a_{max} = \left(5.477\,\frac{rad}{s})^{2}\cdot (12\,cm)

a_{max} = 359.970\,\frac{cm}{s^{2}}

The maximum acceleration of the system is 359.970 centimeters per square second.

7 0
3 years ago
A large cylindrical tank contains 0.750 cubic meters of nitrogen gas at 27 degrees celsius and 1.5 e5 pa absolute pressure. the
k0ka [10]
<span>3.36x10^5 Pascals The ideal gas law is PV=nRT where P = Pressure V = Volume n = number of moles of gas particles R = Ideal gas constant T = Absolute temperature Since n and R will remain constant, let's divide both sides of the equation by T, getting PV=nRT PV/T=nR Since the initial value of PV/T will be equal to the final value of PV/T let's set them equal to each other with the equation P1V1/T1 = P2V2/T2 where P1, V1, T1 = Initial pressure, volume, temperature P2, V2, T2 = Final pressure, volume, temperature Now convert the temperatures to absolute temperature by adding 273.15 to both of them. T1 = 27 + 273.15 = 300.15 T2 = 157 + 273.15 = 430.15 Substitute the known values into the equation 1.5E5*0.75/300.15 = P2*0.48/430.15 And solve for P2 1.5E5*0.75/300.15 = P2*0.48/430.15 430.15 * 1.5E5*0.75/300.15 = P2*0.48 64522500*0.75/300.15 = P2*0.48 48391875/300.15 = P2*0.48 161225.6372 = P2*0.48 161225.6372/0.48 = P2 335886.7441 = P2 Rounding to 3 significant figures gives 3.36x10^5 Pascals. (technically, I should round to 2 significant figures for the result of 3.4x10^5 Pascals, but given the precision of the volumes, I suspect that the extra 0 in the initial pressure was accidentally omitted. It should have been 1.50e5 instead of 1.5e5).</span>
8 0
3 years ago
Other questions:
  • A small black spot is present on the metal plate and if the metal plate is heated to red hot and quickly placed in a dark room t
    7·1 answer
  • ______ studies the blood types and immune factors as a means of identification of the source of the blood.
    13·1 answer
  • As a car skids to a stop, friction transforms kinetic energy to
    14·1 answer
  • A boat heads north at 30 mph while a steamer heads east at 40 mph at the same time. When is the distance between them 50 mi? Ans
    12·1 answer
  • What do an electron and a neutron have in common?
    15·2 answers
  • Convection currents in air and water occur because _
    8·1 answer
  • give three examples from the device on the apply page where potential energy was converted to kinetic energy
    9·1 answer
  • How many bonds can a carbon atom form
    11·2 answers
  • An object moves 20 m east in 30 s and then returns to its starting point taking an additional 50 s. If west is chosen as the pos
    7·1 answer
  • In Fraunhofer diffraction wave front used is __________. A. Spherical B. Circular C. Plane D. Conical
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!