Answer:
Formula weight of H₂O molecule is 18.02 amu.
Explanation:
Given data:
Formula weight of H₂O = ?
Atomic mass of H = 1.008 amu
Atomic mass of O = 16.00 amu
Solution:
Formula weight:
"It is the sum of all the atomic weight of atoms present in given formula"
Formula weight of H₂O = 2×1.008 amu + 1×16.00 amu
Formula weight of H₂O = 18.02 amu
Thus, formula weight of H₂O molecule is 18.02 amu.
Answer:
Our energy supply comes mainly from fossil fuels, with nuclear power and renewable sources rounding out the mix.
The energy associated with an object's motion is called kinetic energy. Kinetic energy is the energy of motion. All moving objects have kinetic energy
Explanation:
The correct answer is option d, that is, the solubility of a solid is highly dependent on temperature.
Solubility refers to the maximum amount of a component, which will get dissolved in a given concentration of solvent at a particular temperature. The temperature influences the solubility of both gases and solids. The temperature has a direct influence on solubility.
For most of the ionic solids, enhancing the temperature elevates how briskly the solution can be formed. With the increase in temperature, the movement of the solid particles takes place briskly that enhances the chances that they will associate with the majority of the solvent particles. This leads to enhancing the rate at which the solution takes place.
Answer:
Average atomic mass = 85.557 amu.
Explanation:
Given data:
Percent abundance of Rb-85 = 72.15%
Percent abundance of Rb-87 = 27.85%
Average atomic mass = ?
Solution:
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass = (72.15×85)+(27.85×87) /100
Average atomic mass = 6132.75 + 2422.95 / 100
Average atomic mass = 8555.7 / 100
Average atomic mass = 85.557 amu.
I know that Lewis acids and bases are the most inclusive because it deals with electron acceptors and donators. so the answer must be A