Of the three sources listed, geothermal energy
is the least dependent on the weather.
(Once it's installed and running, that is.)
Answer:
THE HEAT NEEDED TO CHANGE 3KG OF WATER FROM 10 C TO 80 C IS 877.8kJ OR 877,800 J.
Explanation:
Mass = 3.0 kg = 3 * 1000 = 3000 g
Initial temperature = 10 C
Final temperature = 80 C
Change in temperature = 80 - 10 = 70 C
Specific heat of water = 4.18 J/g C
Heat needed = unknown
Heat is the amount of energy in joules needed to change a gram of water by 1 C.
Heat = mass * specific heat * change in temperature
Heat = 3000 g * 4.18 J/g C * 70 C
Heat = 877 800 Joules
Heat = 877.8 kJ.
The heat needed to change 3 kg mass of water from 10 C to 80 C is 877,800 J or 877.8 kJ.
Answer:
Gay-Lussac's Law
Explanation:
The pressure is directly proportional to the absolute temperature under constant volume. This states the Gay-Lussac's law. The equation is:
P1T2 = P2T1
<em>Where P is pressure and T absolute temperature of 1, initial state and 2, final state of the gas.</em>
<em />
That means the right option is:
- Gay-Lussac's Law
Taking into account definition of percent yield, the percent yield for the reaction is 76.25%.
<h3>Percent yield</h3>
The percent yield is the ratio of the actual return to the theoretical return expressed as a percentage.
The percent yield is calculated as the experimental yield divided by the theoretical yield multiplied by 100%:
where the theoretical yield is the amount of product acquired through the complete conversion of all reagents in the final product, that is, it is the maximum amount of product that could be formed from the given amounts of reagents.
<h3>Percent yield in this case</h3>
In this case, you know:
- actual yield= 1.22 mol
- theorical yield= 1.60 mol
Replacing in the definition of percent yields:
Solving:
<u><em>percent yield= 76.25%</em></u>
Finally, the percent yield for the reaction is 76.25%.
Learn more about percent yield:
brainly.com/question/14408642
#SPJ1