Number 2 lower entropy and higher entropy
Answer:
Identify one disadvantage to each of the following models of electron configuration:
Dot structures
Arrow and line diagrams
Written electron configurations
Explanation:
Identify one disadvantage to each of the following models of electron configuration:
Dot structures
Arrow and line diagrams
Written electron configurations
The number of moles of argon that must be released in order to drop.
Solution:
Initial Temperature = 25°c = 298 K
Final Temperature =125 °c = 398 K
Initial Moles (n1) = 0.40 mole
Now, Using the ideal gas law,
n1T1 = n2T2
0.400×298 = n2 × 398
n2 = 0.299 mol
Moles of Argon released
= 0.400-0.299
= 0.100 mol.
Pressure and force are related. That is using the physical equations if you know the other, you can calculate one using pressure = force/area. This pressure can be reported in pounds per square inch, psi, or Newtons per square meter N/m2. Kinetic energy causes air molecules to move faster. They hit the walls of the container more often and with greater force. The increased pressure inside the can may exceed the strength of the can and cause an explosion.
Learn more about The temperature here:-brainly.com/question/24746268
#SPJ1
Answer:56.98496
Explanation:
half if diameter is radius or 1.55 and double the radius is 3.10 or the length of the diameter. you have a height given, so use the radius and heaight to plug it in the circular cylinder calculator and you get 56.98496
Answer : When we consider the atmospheric pressure as 1 atm then according to the ideal gas equation we can find out the molar mass of any unknown by this formula ;
PV=nRT
so if the pressure increases than 1 atm then we can see from the above equation that it will result in greater value for the number of moles (n) in the above equation.
While n = m/M where m is mass of the unknown in g and M is molecular mass.
So, if pressure is higher then it will result in molar mass of unknown which is much smaller.