Answer:
i)ω=3600 rad/s
ii)V=7059.44 m/s
iii)F=1245.8 N
Explanation:
i)
We know that angular speed given as
We know that for one revolution
θ=2π
Given that time t= 2 hr
So
ω=θ/t
ω=2π/2 = π rad/hr
ω=3600 rad/s
ii)
Average speed V
Where M is the mass of earth.
R is the distance
G is the constant.
Now by putting the values
V=7059.44 m/s
iii)
We know that centripetal fore given as
Here given that m= 200 kg
R= 8000 km
so now by putting the values
F=1245.8 N
Answer:
and my favorite song is popular loner
Explanation:
my favorite rapper is rod wave
Answer:
D
Explanation:
To know which is most or least cost-effective, it's not enough to look at only the per day rate, or only the time to complete. You have to multiply them to get the total cost of the project.
As you can see, Greg is the least cost-effective because he charges the most for the project.
Answer:
Absolute pressure=70.72 KPa
Explanation:
Given that Vacuum gauge pressure= 30 KPa
Barometer reading =755 mm Hg
We know that barometer always reads atmospheric pressure at given situation.So atmospheric pressure is equal to 755 mm Hg.
We know that P= ρ g h
Density of
So P=13600 x 9.81 x 0.755
P=100.72 KPa
We know that
Absolute pressure=atmospheric pressure + gauge pressure
But here given that 30 KPa is a Vacuum pressure ,so we will take it as negative.
Absolute pressure=atmospheric pressure + gauge pressure
Absolute pressure=100.72 - 30 KPa
So
Absolute pressure=70.72 KPa
Answer:
Q = -68.859 kJ
Explanation:
given details
mass
initial pressure P_1 = 104 kPa
Temperature T_1 = 25 Degree C = 25+ 273 K = 298 K
final pressure P_2 = 1068 kPa
Temperature T_2 = 311 Degree C = 311+ 273 K = 584 K
we know that
molecular mass of
R = 8.314/44 = 0.189 kJ/kg K
c_v = 0.657 kJ/kgK
from ideal gas equation
PV =mRT
WORK DONE
w = 586*(0.1033 -0.514)
W =256.76 kJ
INTERNAL ENERGY IS
HEAT TRANSFER
= 187.902 +(-256.46)
Q = -68.859 kJ