<span>At 100 feet, the diver is under about 4 atmospheres pressure. If she is free diving, her lungs will be compressed to about 1/4 their size on the surface (with some movement of the major abdominal organs). If she is scuba diving, the air which she is breathing is also at 4 atmospheres and there is no problem. (The non-gas spaces in the body are not-compressible and are unaffected.) The only problems she has to concern herself with are the beginnings to nitrogen narcosis and the nitrogen which is dissolving (Henry's law) into her body tissues. On the way up, she also has to remember that the air in her lungs will expand by a factor of 4 and she better exhale! Hope this helps you</span>
The correct answer is A
its not D because a low pH is a acid
its not C because a base releases OH- ions
its not B because it donates and releases OH- ions
hope this helps
Answer:
52.5 mol O2
Explanation:
4 FeCl3 + 6 O2 -> 2 Fe2O3 +6 Cl2
4 mol FeCl3 -> 6 mol O2
35.0 mol FeCl3 -> x
x= (35.0 mol FeCl3 * 6 mol O2)/4 mol FeCl3
x=52.5 mol O2
Answer:
When a body moves in a circle with constant speed , it is said to be in uniform circular motion .
Explanation:
- When an object moves in a circular path , its direction changes at each point .
- This change in direction result in change of velocity (velocity is vector quantity which changes if direction of the object change) .However speed do not change (it is scalar quantity , not affected by Direction)
- The Change in velocity produce acceleration ( a = v - u)
- Hence The object always produce acceleration in uniform circular motion .So, Some force (centripetal force) is needed to keep the object in circular motion.
1.062 mol/kg.
<em>Step 1</em>. Write the balanced equation for the neutralization.
MM = 204.22 40.00
KHC8H4O4 + NaOH → KNaC8H4O4 + H2O
<em>Step 2</em>. Calculate the moles of potassium hydrogen phthalate (KHP)
Moles of KHP = 824 mg KHP × (1 mmol KHP/204.22 mg KHP)
= 4.035 mmol KHP
<em>Step 3</em>. Calculate the moles of NaOH
Moles of NaOH = 4.035 mmol KHP × (1 mmol NaOH/(1 mmol KHP)
= 4.035 mmol NaOH
<em>Step 4</em>. Calculate the mass of the NaOH
Mass of NaOH = 4.035 mmol NaOH × (40.00 mg NaOH/1 mmol NaOH)
= 161 mg NaOH
<em>Step 5</em>. Calculate the mass of the water
Mass of water = mass of solution – mass of NaOH = 38.134 g - 0.161 g
= 37.973 g
<em>Step 6</em>. Calculate the molal concentration of the NaOH
<em>b</em> = moles of NaOH/kg of water = 0.040 35 mol/0.037 973 kg = 1.062 mol/kg