Answer:
Explanation:
From the information given:
Mass of carbon tetrachloride = 5 kg
Pressure = 1 bar
The given density for carbon tetrachloride = 1590 kg/m³
The specific heat of carbon tetrachloride = 0.84 kJ/kg K
From the composition, the initial volume of carbon tetrachloride will be:
= 0.0031 m³
Suppose
is independent of temperature while pressure is constant;
Then:
The change in volume can be expressed as:





However; the workdone = -PdV

W = - 7.6 J
The heat energy Q = Δ h


Q = 84 kJ
The internal energy is calculated by using the 1st law of thermodynamics; which can be expressed as;
ΔU = ΔQ + W
ΔU = 84 kJ + ( -7.6 × 10⁻³ kJ)
ΔU = 83.992 kJ
It has to be intensive, which means it does not depend on the amount of the substance. Boiling point, melting point, and density are three intensive physical properties.
Answer:
Whether barium chloride solution was pure
Explanation:
We may answer whether barium chloride was pure. The sequence of this experiment might be depicted by the following balanced chemical equations:


Having a total sample of 10.0 grams, we would firstly find the mass percentage of barium in barium chloride:

This means in 10.0 g, we have a total of:
of barium cations.
The precipitate is then formed and we measure its mass. Having its mass determined, we'll firstly find the percentage of barium in barium sulfate using the same approach:

Multiplying the mass we obtained by the fraction of barium will yield mass of barium in barium sulfate. Then:
- if this number is equal to 6.595 g, we have a pure sample of barium chloride;
- if this number is lower than 6.595 g, this means we have an impure sample of barium chloride, as we were only able to precipitate a fraction of 6.595 g.