Answer:
They represent it by ensuring that the number of atoms of each element (matter) in the reactant side is the same as the product side
Explanation:
The law of conservation of matter stated that matter can neither be created nor destroyed. Chemical equations involve combining atoms of elements. The compounds combined by chemists are called REACTANTS while the produced compounds are called PRODUCTS.
In order to conform to the law of conservation of matter, the same quantity of matter present in the reactants must be present in the products. This means that the number of atoms of each element (matter) in the reactant side must be the same as the product side. For example;
C6H12O6 + 6O2 → 6CO2 + 6H2O
In this chemical equation for photosynthesis, number of atoms in the reactant side (6 carbon, 12 hydrogen, 18 oxygen) are the same as that in the product side (6 carbon, 12 hydrogen, 18 oxygen), hence, this obeys the law of conservation of mass.
In a nutshell, chemists chemists properly represent the law of conservation of matter in their chemical equations by making sure that same number of atoms of reactants is present in the products.
Like hydrogen fluoride (HF), water (H2O) is a polar covalent molecule.
The electron pair in a non-polar covalent bond is shared equally by the two bonded atoms, but in a polar covalent bond, the electron pair is shared unequally by the two bonded atoms. Differences in electronegativity are what lead to polar bonding.
The entire transfer of valence electron(s) between atoms is referred to as an ionic bond. It is a kind of chemical connection that produces two ions with opposing charges. In ionic bonding, the nonmetal takes the lost electrons to form a negatively charged anion while the metal loses them to become a positively charged cation.
Learn more about Polar covalent bond here-
brainly.com/question/1646189
#SPJ4
Once you have constructed an effective hypothesis, the next step in the scientific inquiry process is to
test the hypothesis through experimentation. This is a great opportunity for students to start a science
notebook, if they have not yet started recording their progress.
Steps to Identifying and Conducting an Appropriate Experiment to Test a Hypothesis
1) Present Hypotheses
Make a list of all potential hypotheses to be tested.
2) Make Predictions
For each hypothesis, ask what would be true if the hypothesis were true.
3) Write the Experimental Procedure
The experimental procedure is a step-by-step recipe for the science experiment. A good
procedure contains enough detail that someone else could easily duplicate the
experiment. Once you have formed a hypothesis, you will need to develop your
experimental procedure to test whether your hypothesis is true or false.
4) Identify the Independent and Dependent Variables
The first step of designing the experimental procedure involves planning how to change
the independent variable and how to measure the impact that this change has on the
dependent variable. To guarantee a fair test when conducting the experiment, make sure
that the only thing changing is the independent variable. All controlled variables must
remain constant.
5) Design the Experiments
How can you identify an appropriate experiment that will effectively test your
hypothesis? Begin by asking yourselves, “What can I do that will give me one result if my
hypothesis is true, and a different result if my hypothesis is false?” Design at least one
possible experiment for each hypothesis. Be sure that each experiment tests only one
hypothesis.
I'm sorry I'm not quit sure
Answer:

Explanation:
number of moles of C8H9NO2 = 
The trick is to remember to convert milligrams to grams because molar mass is normally presented in grams per mole