Answer:
Heat required = 13,325 calories or 55.75 KJ.
Explanation:
To convert a water to steam at 100 degree celsius to vapor, we have to give latent heat of vaporization to water
Which equals ,
Q = mL,
Where, m is the mass of water present
L = specific latent heat of vaporization
Here , m= 25 gram
L equals to 533 calories (or 2230 Joules)
So, Q = 25×533 = 13,325 Calories
Or , Q = 55,750 Joules = 55.75 KJ
so, Heat required = 13,325 calories or 55.75 KJ.
I think it’s 2 hope that helped
The pH a 0.25 m solution of C₆H₅NH₂ is equal to 3.13.
<h3>How do we calculate pH of weak base?</h3>
pH of the weak base will be calculate by using the Henderson Hasselbalch equation as:
pH = pKb + log([HB⁺]/[B])
pKb = -log(1.8×10⁻⁶) = 5.7
Chemical reaction for C₆H₅NH₂ is:
C₆H₅NH₂ + H₂O → C₆H₅NH₃⁺ + OH⁻
Initial: 0.25 0 0
Change: -x x x
Equilibrium: 0.25-x x x
Base dissociation constant will be calculated as:
Kb = [C₆H₅NH₃⁺][OH⁻] / [C₆H₅NH₂]
Kb = x² / 0.25 - x
x is very small as compared to 0.25, so we neglect x from that term and by putting value of Kb, then the equation becomes:
1.8×10⁻⁶ = x² / 0.25
x² = (1.8×10⁻⁶)(0.25)
x = 0.67×10⁻³ M = [C₆H₅NH₃⁺]
On putting all these values on the above equation of pH, we get
pH = 5.7 + log(0.67×10⁻³/0.25)
pH = 3.13
Hence pH of the solution is 3.13.
To know more about Henderson Hasselbalch equation, visit the below link:
brainly.com/question/13651361
#SPJ4
Answer:
Mass of P4O6=103.4
P4O10=133.48
Explanation:
Balanced reaction is:
8P +8
⇒
+
Both reactant completely vanishes as equivalent of bot are equal.
Moles of P=
=3.80
Moles of
=
=3.80
No. of moles of formed product are equal and is
th of mole of any of reactant.
Thus weight of
=
×220 ≈103.41
weight of
=
×284 ≈133.48