The answer is Nuclear Fusion. The sun emits energy by converting hydrogen into helium. Nuclear fusion does two things, it converts hydrogen into helium and it also converts mass to energy.
Answer:
The refractive index of the material is 1.28.
Explanation:
It is given that,
Refractive index of medium 1, n₁ = 1.31
Critical angle, 
At critical angle rays will reflects at 90 degrees. Using Snell's law as:

At critical angle, 



So, the refractive index of the material is 1.28. Hence, this is the required solution.
The force of gravity on objects is proportional to the mass of each object.
(That's a big part of the reason why, when you eat more and your mass
increases, you weigh more.)
The forces of gravity between the Earth and the 6kg ball are 50% greater
than the forces of gravity between the Earth and the 4kg ball.
(The gravitational forces between the 4kg ball and the 6kg ball, or between
both bowling balls and you, are so small that they may be ignored.)
The number of electrons emitted from the metal per second increases if the intensity of the incident light is increased.
Answer: Option B
<u>Explanation:</u>
As a result of photoelectric effect, electrons are emitted by the light incident on a metal surface. The emitted electrons count and its kinetic energy can measure as the function of light intensity and frequency. Like physicists, at the 20th century beginning, it should be expected that the light wave's energy (its intensity) will be transformed into the kinetic energy of emitted electrons.
In addition, the electrons count emitting from metal must vary with light wave frequency. This frequency relationship was expected because the electric field oscillates due to the light wave and the metal electrons react to different frequencies. In other words, the number of electrons emitted was expected to be frequency dependent and their kinetic energy should be dependent on the intensity (constant wavelength) of light.
Thus, the maximum in kinetic energy of electrons emitted increases with increase in light's frequency and is experimentally independent of light intensity. So, the number of emitted electrons is proportionate to the intensity of the incident light.