Answer:
176.58 m
Explanation:
t = Time taken = 6 seconds
u = Initial velocity = 0
v = Final velocity
s = Displacement
g = Acceleration due to gravity = 9.81 m/s² = a
Equation of motion

The object travels 176.58 m from the cliff in 6 seconds.
Answer:The rate of ejection of photoelectrons will increase
Explanation:
If the frequency of incident monochromatic light is held constant and its intensity is increased, the rate of ejection of photoelectrons from the metal surface increases with increase in intensity of the monochromatic light. More current flows due to more ejection of photoelectrons.
Answer:
θ = 36.2º
Explanation:
When light passes through a polarizer it becomes polarized and if it then passes through a second polarizer, it must comply with Malus's law
I = I₀ cos² tea
The non-polarized light between the first polarized of this leaves half the intensity, with vertical polarization
I₁ = I₀ / 2
I₁ = 845/2
I₁ = 422.5 W / m²
In this case, the incident light in the second polarizer has an intensity of I₁ = 422.5 W / m² and the light that passes through the polarizer has a value of
I = 275 W / m
²
Cos² θ = I / I₁
Cos θ = √ I / I₁
Cos θ = √ (275 / 422.5)
Cos θ = 0.80678
θ = cos⁻¹ 0.80678
θ = 36.2º
This is the angle between the two polarizers
Answer:
Explanation:
Given
Car speed decreases at a constant rate from 64 mi/h to 30 mi/h
in 3 sec


we know acceleration is given by 


negative indicates that it is stopping the car
Distance traveled



s=63.038 m