Answer:
The boiling point of a 8.5 m solution of Mg3(PO4)2 in water is<u> 394.91 K.</u>
Explanation:
The formula for molal boiling Point elevation is :

= elevation in boiling Point
= Boiling point constant( ebullioscopic constant)
m = molality of the solution
<em>i =</em> Van't Hoff Factor
Van't Hoff Factor = It takes into accounts,The abnormal values of Temperature change due to association and dissociation .
In solution Mg3(PO4)2 dissociates as follow :

Total ions after dissociation in solution :
= 3 ions of Mg + 2 ions of phosphate
Total ions = 5
<em>i =</em> Van't Hoff Factor = 5
m = 8.5 m
= 0.512 °C/m
Insert the values and calculate temperature change:



Boiling point of pure water = 100°C = 273.15 +100 = 373.15 K

= 373.15 K[/tex]
21.76 = T - 373.15
T = 373.15 + 21.76
T =394.91 K
Answer:
Explanation:
Molal freezing point depression constant of butanol Kf = 8.37⁰C /m
ΔTf = Kf x m , m is no of moles of solute per kg of solvent .
mol weight of butanol = 70 g
235.1 g of butanol = 235.1 / 70 = 3.3585 moles
3.3585 moles of butanol dissolved in 4.14 kg of water .
ΔTf = 8.37 x 3.3585 / 4.14
= 6.79⁰C
Depression in freezing point = 6.79
freezing point of solution = - 6.79⁰C .
Answer:
614 034 kg
Explanation:
n = m/Mm
m = n * Mm
Mm(MgSO4) = 1 * 24.3 * 1 * 32.1 * 4 * 16 = 49921.92
m = 12.3 * 49921.92
m = 614 034 kg
Answer:
The rows on the periodic table are called periods. All the elements in a period have valence electrons in the same shell. The number of valence electrons increases from left to right in the period. When the shell is full, a new row is started and the process repeats.
<h2>
I hope it helps plz let me know if it is right or wrong.</h2>