Anytime an atom shares or transfers electrons a bond is formed, sharing= covalent and transfer= ionic
Answer:
0.07172 L = 7.172 mL.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.
</em>
where, P is the pressure of the gas in atm (P = 1.0 atm, Standard P).
V is the volume of the gas in L (V = ??? L).
n is the no. of moles of the gas in mol (n = 3.2 x 10⁻³ mol).
R is the general gas constant (R = 0.0821 L.atm/mol.K),
T is the temperature of the gas in K (T = 273 K, Standard T).
<em>∴ V = nRT/P =</em> (3.2 x 10⁻³ mol)(0.0821 L.atm/mol.K)(273 K)/(1.0 atm) = <em>0.07172 L = 7.172 mL.</em>
Using the VSEPR theory, the electron bond pairs and lone pairs on the center atom will help us predict the shape of a molecule. The shape of a molecule is determined by the location of the nuclei and its electrons. The electrons and the nuclei settle into positions that minimize repulsion and maximize attraction.
Answer:
190.4g
Explanation:
1.6mol of KBr (119.002g KBr/1 mol) = 190.4g
since you want to find grams, take the molar mass of KBr (119.002) per 1 mol and use it as your conversion factor (119.002g KBr/1 mol) which will then cancel out mols and leave you with grams.
Answer:
The ionization equation is
⇄
(1)
Explanation:
The ionization equation is
⇄
(1)
As the Bronsted definition sais, an acid is a substance with the ability to give protons thus, H2PO4 is the acid and HPO42- is the conjugate base.
The Ka expression is the ratio between the concentration of products and reactants of the equilibrium reaction so,
![Ka = \frac{[HPO_{4}^{-2}] [H_{3}O^{+}]}{[H_{2}PO_{4}^{-}] [H_{2}O]} = 6.2x10^{-8}](https://tex.z-dn.net/?f=Ka%20%3D%20%5Cfrac%7B%5BHPO_%7B4%7D%5E%7B-2%7D%5D%20%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%7B%5BH_%7B2%7DPO_%7B4%7D%5E%7B-%7D%5D%20%5BH_%7B2%7DO%5D%7D%20%3D%206.2x10%5E%7B-8%7D)
The pKa is

The pKa of H2CO3 is 6,35, thus this a stronger acid than H2PO4. The higher the pKa of an acid greater the capacity to donate protons.
In the body H2CO3 is a more optimal buffer for regulating pH due to the combination of the two acid-base equilibriums and the two pKa.
If the urine is acidified, according to Le Chatlier's Principle the equilibrium (1) moves to the left neutralizing the excess proton concentration.