Phase 1. Forethought/preaction—This phase precedes the actual performance; sets the stage for action; maps out the tasks to minimize the unknown; and helps to develop a positive mindset. Realistic expectations can make the task more appealing. Goals must be set as specific outcomes, arranged in order from short-term to long-term. We have to ask students to consider the following:
<span>When will they start?Where will they do the work?How will they get started?<span>What conditions will help or hinder their learning activities are a part of this phase?
</span></span>
Phase 2. Performance control—This phase involves processes during learning and the active attempt to utilize specific strategies to help a student become more successful.
We have to ask students to consider the following:
<span>Are students accomplishing what they hoped to do?Are they being distracted?Is this taking more time than they thought?Under what conditions do they accomplish the most?What questions can they ask themselves while they are working?<span>How can they encourage themselves to keep working (including self-talk—come on, get your work done so you can watch that television show or read your magazine!)
</span></span>
Phase 3. Self-reflection—This phase involves reflection after the performance, a self-evaluation of outcomes compared to goals.
We have to ask students to consider the following:
<span>Did they accomplish what they planned to do?Were they distracted and how did they get back to work?Did they plan enough time or did they need more time than they thought?<span>Under what conditions did they accomplish the most work.
Hope this helps!!!!!
</span></span>
Answer:
<em> I can't see the picture</em>
Explanation:
To solve this problem we will use the Ampere-Maxwell law, which describes the magnetic fields that result from a transmitter wire or loop in electromagnetic surveys. According to Ampere-Maxwell law:

Where,
B= Magnetic Field
l = length
= Vacuum permeability
= Vacuum permittivity
Since the change in length (dl) by which the magnetic field moves is equivalent to the perimeter of the circumference and that the electric flow is the rate of change of the electric field by the area, we have to

Recall that the speed of light is equivalent to

Then replacing,


Our values are given as




Replacing we have,



Therefore the magnetic field around this circular area is 