Answer:
The conductance will increase as the concentration of the electrolyte is increased.
Explanation:
The ions are what carry the charges from one electrode to another. The more there are, the easier it is for electrons to get across the solution of electrolyte,
A) Fe⁰ ----> Fe⁺³ +3e⁻ oxidation | *2
b) <u>Cu⁺² + 2e⁻ -----> Cu⁰ reduction |*3</u>
c) 2Fe⁰ +3Cu⁺² -----> 2Fe⁺³ + 2Cu⁰
Explanation:
subscript is K
superscript is ^
subscript K means a unit of temperature like F or C
superscript ^ means to the power of
So all together it means to the power of 40 K
Answer:
71.372 g or 0.7 moles
Explanation:
We are given;
- Moles of Aluminium is 1.40 mol
- Moles of Oxygen 1.35 mol
We are required to determine the theoretical yield of Aluminium oxide
The equation for the reaction between Aluminium and Oxygen is given by;
4Al(s) + 3O₂(g) → 2Al₂O₃(s)
From the equation 4 moles Al reacts with 3 moles of oxygen to yield 2 moles of Aluminium oxide.
Therefore;
1.4 moles of Al will require 1.05 moles (1.4 × 3/4) of oxygen
1.35 moles of Oxygen will require 1.8 moles (1.35 × 4/3) of Aluminium
Therefore, Aluminium is the rate limiting reagent in the reaction while Oxygen is the excess reactant.
4 moles of aluminium reacts to generate 2 moles aluminium oxide.
Therefore;
Mole ratio Al : Al₂O₃ is 4 : 2
Thus;
Moles of Al₂O₃ = Moles of Al × 0.5
= 1.4 moles × 0.5
= 0.7 moles
But; 1 mole of Al₂O₃ = 101.96 g/mol
Thus;
Theoretical mass of Al₂O₃ = 0.7 moles × 101.96 g/mol
= 71.372 g