The pressure of a gas depends on the temperature and volume of the gas.
<h3>Ideal gas equation</h3>
PV = nRT
Where
- P is the pressure
- V is the volume
- n is the number of mole
- R is the gas constant
- T is the temperature
From the equation given above, we obtained the following:
PV = nRT
Divide both sides by V
P = nRT / V
R is constant and n = 1
P = T / V
Thus, we can see that the pressure (P) is dependent on the temperature (T) and the volume (V)
Learn more about ideal gas equation:
brainly.com/question/4147359
#SPJ11
Answer:
1. 
2. 
Explanation:
Hello,
1. In this case, since the volume of the rock is obtained via the difference between the volume of the cylinder with the water and the rock and the volume of the cylinder with the water only:

Thus, the density turns out:

2. In this case, given the density and mass of aluminum we can compute its volume as follows:

Moreover, as the volume is also defined in terms of width, height and length:

The height is computed to be:

Best regards.
Answer:
A:UNDERSTANDING CONCEPTS PART A 13) Which of the following is an example of periodicity? A) eating breakfast
Hey there!
Values Ka1 and Ka2 :
Ka1 => 8.0*10⁻⁵
Ka2 => 1.6*10⁻¹²
H2A + H2O -------> H3O⁺ + HA⁻
Ka2 is very less so I am not considering that dissociation.
Now Ka = 8.0*10⁻⁵ = [H3O⁺] [HA⁻] / [H2A]
lets concentration of H3O⁺ = X then above equation will be
8.0*10−5 = [x] [x] / [0.28 -x
8.0*10−5 = x² / [0.28 -x ]
x² + 8.0*10⁻⁵x - 2.24 * 10⁻⁵
solve the quardratic equation
X =0.004693 M
pH = -log[H⁺]
pH = - log [ 0.004693 ]
pH = 2.3285
Hope that helps!
If you are provided with Cation and an Anion with different oxidation states, then there ratio in the formula unit is adjusted as such that the oxidation number of one ion is set the coefficient of other ion and vice versa,
Example:
Let suppose you are provided with A⁺² and B⁻¹, so multiply A by 1 and B by 2 as follow,
A(B)₂
In statement we are given with Co⁺³ and SO₄⁻², so multiply Co⁺³ by 2 and SO₄⁻² by 3, hence,
Co₂(SO₄)₃
Result:
Co₂(SO₄)₃ is the correct answer.