Answer:
<h2>Percentage error is a measurement of the discrepancy between an observed and a true, or accepted value .</h2>
Explanation:
<h3 />
Answer:
A - Increase (R), Decrease (P), Decrease(q), Triple both (Q) and (R)
B - Increase(P), Increase(q), Decrease (R)
C - Triple (P) and reduce (q) to one third
Explanation:
<em>According to Le Chatelier principle, when a system is in equilibrium and one of the constraints that affect the rate of reaction is applied, the equilibrium will shift so as to annul the effects of the constraint.</em>
P and Q are reactants, an increase in either or both without an equally measurable increase in R (a product) will shift the equilibrium to the right. Also, any decrease in R without a corresponding decrease in either or both of P and Q will shift the equilibrium to the right. Hence, Increase(P), Increase(q), and Decrease (R) will shift the equilibrium to the right.
In the same vein, any increase in R without a corresponding increase in P and Q will shift the equilibrium to the left. The same goes for any decrease in either or both of P and Q without a counter-decrease in R will shift the equilibrium to the left. Hence, Increase (R), Decrease (P), Decrease(q), and Triple both (Q) and (R) will shift the equilibrium to the left.
Any increase or decrease in P with a commensurable decrease or increase in Q (or vice versa) with R remaining constant will create no shift in the equilibrium. Hence, Triple (P) and reduce (q) to one third will create no shift in the equilibrium.
Answer:
0.67mol/Kg
Explanation:
The following were obtained from the question:
Mole of solute = 0.50mol
Mass of solvent = 750g = 750/1000 = 0.75Kg
Molality =?
Molality = mole of solute /mass of solvent
Molality = 0.5/0.75
Molality = 0.67mol/Kg
I don't recognize this problem, please make sure the input is complete.
A magnet creates an invisible area of magnetism all around it called a magnetic field. The north pole of a magnet points roughly toward Earth's north pole and vice-versa. That's because Earth itself contains magnetic materials and behaves like a gigantic magnet