Answer:
Explained below.
Explanation:
A substance at low temperature simply means that the average energy of molecular motion in that substance is low while at higher temperature, the average energy of molecular ml tip in that substance is high.
Answer:
1
Explanation:
4 HBr + O2 → 2H 20 + 2Br 2
...............
Answer : The concentration of NOBr after 95 s is, 0.013 M
Explanation :
The integrated rate law equation for second order reaction follows:
![k=\frac{1}{t}\left (\frac{1}{[A]}-\frac{1}{[A]_o}\right)](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B1%7D%7Bt%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%5BA%5D_o%7D%5Cright%29)
where,
k = rate constant =
t = time taken = 95 s
[A] = concentration of substance after time 't' = ?
= Initial concentration = 0.86 M
Now put all the given values in above equation, we get:
![0.80=\frac{1}{95}\left (\frac{1}{[A]}-\frac{1}{(0.86)}\right)](https://tex.z-dn.net/?f=0.80%3D%5Cfrac%7B1%7D%7B95%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%280.86%29%7D%5Cright%29)
[A] = 0.013 M
Hence, the concentration of NOBr after 95 s is, 0.013 M
Because it’s kinetic energy INCREASES the speed
Answer:
Structures are given below.
Explanation:
- Treatment of 2-bromo-2-methylbutane with KOH in ethanol will give elimination of HBr through E2 mechanism.
- H atoms adjacent to Br will be eliminated.
- 2-bromo-2-methylbutane has two possible adjacent H atoms that can be eliminated giving mixture of products.
- Product of this elimination reaction is alkene. Here saytzeff fule is followed during elimination. So most substituted alkene will be major product.
- Structure of alkenes are given below.