Answer:
Explanation:
From the given information:
The concentration of metal ions are:
![[Ca^{2+}]= \dfrac{0.003474 \ M \times 20.49 \ mL}{10.0 \ mL}](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%3D%20%5Cdfrac%7B0.003474%20%5C%20M%20%5Ctimes%2020.49%20%5C%20mL%7D%7B10.0%20%5C%20mL%7D)
![[Ca^{2+}]=0.007118 \ M](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%3D0.007118%20%5C%20M)
![[Mg^2+] = \dfrac{0.003474 \ M\times (26.23 - 20.49 )mL}{10.0 \ mL}](https://tex.z-dn.net/?f=%5BMg%5E2%2B%5D%20%3D%20%5Cdfrac%7B0.003474%20%5C%20M%5Ctimes%20%2826.23%20%20-%2020.49%20%29mL%7D%7B10.0%20%5C%20mL%7D)

Mass of Ca²⁺ in 2.00 L urine sample is:

= 0.1598 g
Mass of Ca²⁺ = 159.0 mg
Mass of Mg²⁺ in 2.00 L urine sample is:

= 0.3461 g
Mass of Mg²⁺ = 346.1 mg
Answer:
357.475
Explanation:
First you need periodic table and you have to look for mass
Fe = 3 x 55.845 = 167.535
P = 2 x 30.97 = 61.94
o = 4 x 2 so 8 oxygen = 8 x 16 = 128
add all and you get 357.475
ΔH2 = - δH1 δH2 = - 2 x δH1 δH2 = 2 x <span>δ</span>H1
It is more likely 9. pH 4 is acidic and pH 9 is basic, and as the pH of a substance gets closer to 0 or 14, the substance becomes more corrosive or reactive. As 4 is closer to 0 than 9 is to 14, there is a much higher chance the solution has a pH of 9, because pH 4 is less neutral and therefore more corrosive/reactive than pH 9.