1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tomtit [17]
3 years ago
8

. A student times a car traveling a distance of 2 m. She finds that it takes the car 5 s to

Physics
1 answer:
AveGali [126]3 years ago
3 0
No, the car travels 1 metre in 5s at the start which is 0.2m/s, while the second meter it travels one metre in 8 seconds which is 0.125 m/s, the speed changes therefore it is not constant during the two metres the car travels
You might be interested in
Familiarize yourself with the map showing the DSDP Leg 3 drilling locations and the position of the mid-ocean ridge (Figure 1 to
Inga [223]

Answer:

For more than 40 years, results from scientific ocean drilling have contributed to global understanding of Earth’s biological, chemical, geological, and physical processes and feedback mechanisms. The majority of these internationally recognized results have been derived from scientific ocean drilling conducted through three programs—the Deep Sea Drilling Project (DSDP; 1968-1983), the Ocean Drilling Program (ODP; 1984-2003), and the Integrated Ocean Drilling Program (IODP; 2003-2013)—that can be traced back to the first scientific ocean drilling venture, Project Mohole, in 1961. Figure 1.1 illustrates the distribution of drilling and sampling sites for each of the programs, and Appendix A presents tables of DSDP, ODP, and IODP legs and expeditions. Although each program has benefited from broad, international partnerships and research support, the United States has taken a leading role in providing financial continuity and administrative coordination over the decades that these programs have existed. Currently, the United States and Japan are the lead international partners of IODP, while a consortium of 16 European countries and Canada participates in IODP under the auspices of the European Consortium for Ocean Research Drilling (ECORD). Other countries (including China, Korea, Australia, New Zealand, and India) are also involved.

As IODP draws to a close in 2013, a new process for defining the scope of the next phase of scientific ocean drilling has begun. Illuminating Earth’s Past, Present, and Future: The International Ocean Discovery Program Science Plan for 2013-20231 (hereafter referred to as “the science plan”), which is focused on defining the scientific research goals of the next 10-year phase of scientific ocean drilling, was completed in June 2011 (IODP-MI, 2011). The science plan was based on a large, multidisciplinary international drilling community meeting held in September 2009.2 A draft of the plan was released in June 2010 to allow for additional comments from the broader geoscience community prior to its finalization. As part of the planning process for future scientific ocean drilling, the National Science Foundation (NSF) requested that the National Research Council (NRC) appoint an ad hoc committee (Appendix B) to review the scientific accomplishments of U.S.-supported scientific ocean drilling (DSDP, ODP, and IODP) and assess the science plan’s potential for stimulating future transformative scientific discoveries (see Box 1.1 for Statement of Task). According to NSF, “Transformative research involves ideas, discoveries, or tools that radically change our understanding of an important existing scientific or engineering concept or educational practice or leads to the creation of a new paradigm or field of science, engineering, or education. Such research challenges current understanding or provides pathways to new frontiers.”3 This report is the product of the committee deliberations on that review and assessment.

HISTORY OF U.S.-SUPPORTED SCIENTIFIC OCEAN DRILLING, 1968-2011

The first scientific ocean drilling, Project Mohole, was conceived by U.S. scientists in 1957. It culminated in drilling 183 m beneath the seafloor using the CUSS 1 drillship in 1961. During DSDP, Scripps Institution of Oceanography was responsible for drilling operations with the drillship Glomar Challenger. The Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES), which initially consisted of four U.S. universities and research institutions, provided scientific advice. Among its numerous achievements, DSDP

Explanation:

7 0
3 years ago
How much energy is required to change a 44 g
zlopas [31]

Answer:

Ang answer units of J heat of fusion is 3.33 x 105

4 0
3 years ago
If an automobile had a 100%-efficient engine, transferring all of the fuel's energy to work, would the engine be warm to your to
svetlana [45]

Answer:

The engine would be warm to touch, and the exhaust gases would be at ambient temperature. The engine would not vibrate nor make any noise. None of the fuel entering the engine would go unused.

Explanation:

In this ideal engine, none of these events would happen due to the nature of the efficiency.

We can define efficiency as the ratio between the used energy and the potential generable energy in the fuel.

n=W, total/(E, available).

However, in real engines the energy generated in the combustion of the fuel transforms into heat (which heates the exhost gases, and the engine therefore transfering some of this heat to the environment). Also, there are some mechanical energy loss due to vibrations and sound, which are also energy that comes from the fuel combustion.

5 0
3 years ago
About how much of the United States' electricity is produced by nuclear reactors?​
Firdavs [7]

Answer:

19% total electrical output

Explanation:

3 0
2 years ago
Read 2 more answers
What is the intensity of a sound with a sound intensity level (SIL) 67 dB, in units of W/m^2?
vfiekz [6]

Answer:

The intensity of sound (I) = 3.16 x 10⁻⁶ W/m²

Explanation:

We have expression for sound intensity level (SIL),

              L=10log_{10}\left ( \frac{I}{I_0}\right )

Here we need to find the intensity of sound (I).

               L=10log_{10}\left ( \frac{I}{I_0}\right )\\\\log_{10}\left ( \frac{I}{I_0}\right )=0.1L\\\\\frac{I}{I_0}=10^{0.1L}\\\\I=I_010^{0.1L}

Substituting

          L = 67 dB and I₀ = 10⁻¹² W/m² in the equation

          I=I_010^{0.1L}=10^{-12}\times 10^{0.1\times 65}\\\\I_0=10^{-12}\times 10^{6.5}=10^{-5.5}=3.16\times 10^{-6}W/m^2

The intensity of sound (I) = 3.16 x 10⁻⁶ W/m²

8 0
3 years ago
Other questions:
  • Which of these is the best exclamation for why to negatively charged balloons, if put close, will repel?
    14·1 answer
  • If you cut a pill in half will it have less of how much it has to help you or the same amount?
    6·2 answers
  • A Submerged Ball Part A A ball of mass mb and volume V is lowered on a string into a fluid of density Pi (Figure 1) Assume that
    8·1 answer
  • The speed is represented by
    12·2 answers
  • Give five difference between manometer and barometer​
    8·1 answer
  • The loudness of sound is the wave's ____.
    15·2 answers
  • A cannon tilted up at a 29.0° angle fires a cannon ball at 81.0 m/s from atop a 22.0 m -high fortress wall. What is the ball's i
    12·1 answer
  • louis Pasteur developed the germ theory of disease, which state that many diseases are caused by microorganismas. Had scientists
    9·1 answer
  • During the French and Indian war France and Great Britain fought for control of north American territory what impacted the end o
    7·1 answer
  • A block of mass m is attached to the end of a spring (spring stiffness constant k ). The mass is given an initial displacement x
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!