Answer:
215955.06 m/s^2
Explanation:
length of barrel, s = 0.89 m
initial velocity of the bullet, u = 0 m/s
Final velocity of the bullet, v = 620 m/s
Let a be the acceleration of the bullet in the barrel
Use third equation of motion, we get


a = 215955.06 m/s^2
Thus, the acceleration of the bullet inside the barrel is 215955.06 m/s^2.
Answer:
Explanation:
The application of Gauss's law is used in the derivation as shown with detailed step by step in the attached file.
The potential difference on this spherical capacitor is ΔV = Va - Vb = kQ/a - kQ/b = kQ(1/a - 1/b)
Answer:
Newton's first law
Explanation:
it says that an object will continue to be at rest or keep moving till any external for is applied to it to make it move or stop respectively.