Answer:
The specific gravity of the unkown liquid is 15.
Explanation:
Gauge pressure, at the bottom of the tank in this case, can be calculated from

where
and
are the height of the column of oil and the unkown liquid, respectively. Writing for
, we have

Relative to water, the unknow liquid specific weight is 15 times bigger, therefore this is its specific gravity as well.
The vector perpendicular to the plane of A = 3i+ 6j - 2k and B = 4i-j +3k is 16 i - 17 j - 27 k
Let r be the vector perpendicular to A and B,
r = A * B
A = 3i + 6j - 2k
B = 4i - j + 3k
a1 = 3
a2 = 6
a3 = - 2
b1 = 4
b2 = - 1
b3 = 3
a * b = ( a2 b3 - b2 a3 ) i + ( a3 b1 - b3 a1 ) j + ( a1 b2 - b1 a2 ) k
a * b = [ ( 6 * 3 ) - ( - 1 * - 2 ) ] i + [ ( - 2 * 4 ) - ( 3 * 3 ) ] j + [ ( 3 * - 1 ) - ( 4 * 6 ) ] k
a * b = 16 i - 17 j - 27 k
The perpendicular vector, r = 16 i - 17 j - 27 k
Therefore, the vector perpendicular to the plane of A = 3i + 6j - 2k and B = 4i - j + 3k is 16 i - 17 j - 27 k
To know more about perpendicular vectors
brainly.com/question/14384780
#SPJ1
When electrons are lost a positive ion is formed. When electrons are gained, a negative ion is formed. I hope this helps
Answer:
B. 22,22,23,23,22,22,23
Explanation:
The standard deviation is a measure of dispersion or variability of a data set. In order to determine the data set that has the smallest standard deviation, we shall investigate on the ranges of the data sets given. The range of a data set is simply the difference between the maximum and minimum values in a data set. A data set that has a smaller range also has a smaller standard deviation.
From the alternatives given, the data set given by alternative B has the smallest range and consequently the smallest standard deviation.
The maximum value is 23 while the minimum is 22. The range is 1.
Answer:
The final speed of the crate is 12.07 m/s.
Explanation:
For the first 10.0 meters, the only force acting on the crate is 225 N, so we can calculate the acceleration as follows:


Now, we can calculate the final speed of the crate at the end of 10.0 m:
For the next 10.5 meters we have frictional force:


So, the acceleration is:
The final speed of the crate at the end of 10.0 m will be the initial speed of the following 10.5 meters, so:
Therefore, the final speed of the crate after being pulled these 20.5 meters is 12.07 m/s.
I hope it helps you!