Answer : The correct option is, (d) 4 times
Solution :
According to the Coulomb's law, the electrostatic force of attraction or repulsion between two charges is directly proportional to the product of the charges and is inversely proportional to the square of the distance between the the charges.
Formula used :

where,
F = electrostatic force of attraction or repulsion
= Coulomb's constant
and
are the charges
r = distance between two charges
First we have to calculate the force exerted between S and q when the distance between the charge is 1 unit and let us assumed that the charge be 'q'
..........(1)
Now we have to calculate the force exerted between S and p when the distance between the charge is 2 unit at the same charge.
...........(2)
Equation equation 1 and 2, we get


Therefore, the force exerted between S and q is 4 times the force exerted between S and p.
Answer:
It takes
to accelerate the object from rest to the speed v.
Explanation:
From Newton's second law:
(1)
and the definition of acceleration,
(2)
we can solve this problem. Putting (2) in (1) we have:
and solving for
and considering the initial time as zero (
) and the initial velocity also zero (
) we have:

Now, for a mass
and the
we can wrtie the same equation:
and substituting
and
:

So now, it only takes half the time to accelerate the object from rest to the speed v
Answer:
orbitals
Explanation:
The region where an electron is most likely to be is called an orbital. Each orbital can have at most two electrons. Some orbitals, called S orbitals, are shaped like spheres, with the nucleus in the center.
Answer:
Chemical energy is energy that chemical substance to undergoes a chemical reaction to make a new substance.
Explanation:
<h3>hope this makes sense and helps</h3>
Answer:
Wavelength = 3.74 m
Explanation:
In order to find wavelength in "metres", we must first convert megahertz to hertz.
1 MHz = 1 × 10⁶ Hz
80.3 Mhz = <em>x</em>
<em>x </em>= 80.3 × 1 × 10⁶ = 8.03 × 10⁷ Hz
The formula between wave speed, frequency and wavelength is:
v = fλ [where v is wave speed, f is frequency and λ is wavelength]
Reorganise the equation and make λ the subject.
λ = v ÷ f
λ = (3 × 10⁸) ÷ (8.03 × 10⁷)
λ = 3.74 m [rounded to 3 significant figures]