Answer:
6.61 Pounds
Solution:
Step 1: Calculate Mass of Water as;
Density = Mass ÷ Volume
Solving for Mass,
Mass = Density × Volume ------ (1)
As,
Density of Water = 1 g.cm⁻³
And,
3 L of Water = 3000 cm³
Putting values in equation 1,
Mass = 1 g.cm⁻³ × 3000 cm³
Mass = 3000 g
Step 2: Convert Grams into Pounds;
As,
1 Gram = 0.002204 Pounds
So,
3000 Grams = X Pounds
Solving for X,
X = (3000 Grams × 0.002204 Pounds) ÷ 1 Gram
X = 6.61 Pounds
In photosynthesis, plants take in carbon dioxide and turn it into energy that comes out as oxygen.
Answer: Hmmmmm that's crazy....
There are a couple of equations one could use for this type of problem, but I find the following to be the easiest to use and to understand.
Fraction remaining (FR) = 0.5n
n = number of half lives that have elapsed
In this problem, we need to find n and are given the FR, which is 1.56% or 0.0156 (as a fraction).
0.0156 = 0.5n
log 0.0156 = n log 0.5
-1.81 = -0.301 n
n = 6.0 half lives have elapsed
Explanation:
Just wanted to help. Hopefully it's correct wouldn't want to waster your time ;)
Because they consume prey from all trophic levels beneath them.
Answer:
nuclear energy is the cleanest and safest energy source we have available and i agree with this statement for following reasons:
1. Nuclear power is generated by a controlled chain reaction involving the splitting of atoms. A modern nuclear power plant uses the intense heat created by this reaction to heat water and create steam, which turns a turbine and generates electricity. Whereas a coal-fired plant heats water by burning coal, a nuclear plant heats it by splitting atoms. This process is called nuclear fission.
2. Nuclear fission, in simple terms, occurs when an atom splits in two, releasing a massive amount of energy and several subatomic particles called neutrons. These neutrons, in turn, hit and split other atoms, beginning and sustaining the chain reaction. Reactor operators control this reaction in a variety of ways and thus regulate the amount of heat generated and energy produced.
3. The raw fuel for this process is the metal uranium, which must be enriched before it can be used for producing energy in commercial reactors. Enrichment is necessary because mined uranium ore is around 99.3 percent uranium-238, which, in today’s commercial power plants, does not readily split upon exposure to neutrons from the fission chain reaction, and thus makes poor fuel. The other 0.7 percent of mined uranium is uranium-235, which makes excellent fuel. The number refers to the atomic mass, or the total mass of protons and neutrons that make up the atomic nucleus. This difference in mass of the same element makes them two different isotopes of uranium. The enrichment process consists essentially of increasing the percentage of uranium-235 by decreasing the percentage (via removal) of uranium-238.
<h3>i hope you find your answer..</h3>