Answer:
1.24 × 10³ kPa
Explanation:
Step 1: Given data
- Initial pressure of the gas (P₁): 34.5 kPa
- Initial volume of the can (V₁): 473 mL
- Final pressure of the gas (P₂): ?
- Final volume of the can (V₂): 13.16 mL
Step 2: Calculate the final pressure of the gas in the can
If we assume that the gas in the can behaves as an ideal gas and that the temperature remains constant, we can calculate the final pressure of the gas using Boyle's law.
P₁ × V₁ = P₂ × V₂
P₂ = P₁ × V₁ / V₂
P₂ = 34.5 kPa × 473 mL / 13.16 mL = 1.24 × 10³ kPa
The true statement about the balanced equations for nuclear and chemical changes is; both are balanced according to the total mass before and after the change.
A basic law in science is called the law of conservation of mass. Its general statement is that mass can neither be created nor destroyed.
Both in chemical and nuclear changes, mass is involved and in both cases, the law of conservation of mass strictly applies.
This means that for both chemical and nuclear changes; total mass before reaction must be equal to total mass after reaction.
Hence, both reactions are balanced according to the total mass before and after the change.
Learn more: brainly.com/question/22064431
Apsidal precession—The major axis of Moon's elliptical orbit rotates by one complete revolution once every 8.85 years in the same direction as the Moon's rotation itself.
Explanation:
FJjuhjjjJJJii3ii3ii3iiभबजबछसझबूईसडड