Answer:
Upper bounds 22.07 GPa
Lower bounds 17.59 GPa
Explanation:
Calculation to estimate the upper and lower bounds of the modulus of this composite.
First step is to calculate the maximum modulus for the combined material using this formula
Modulus of Elasticity for mixture
E= EcuVcu+EwVw
Let pug in the formula
E =( 110 x 0.40)+ (407 x 0.60)
E=44+244.2 GPa
E=288.2GPa
Second step is to calculate the combined specific gravity using this formula
p= pcuVcu+pwTw
Let plug in the formula
p = (19.3 x 0.40) + (8.9 x 0.60)
p=7.72+5.34
p=13.06
Now let calculate the UPPER BOUNDS and the LOWER BOUNDS of the Specific stiffness
UPPER BOUNDS
Using this formula
Upper bounds=E/p
Let plug in the formula
Upper bounds=288.2/13.06
Upper bounds=22.07 GPa
LOWER BOUNDS
Using this formula
Lower bounds=EcuVcu/pcu+EwVw/pw
Let plug in the formula
Lower bounds =( 110 x 0.40)/8.9+ (407 x 0.60)/19.3
Lower bounds=(44/8.9)+(244.2/19.3)
Lower bounds=4.94+12.65
Lower bounds=17.59 GPa
Therefore the Estimated upper and lower bounds of the modulus of this composite will be:
Upper bounds 22.07 GPa
Lower bounds 17.59 GPa
Answer:
I = 0.625 A
Explanation:
Given that,
Power of the light bulb, P = 75 W
Voltage of the circuit, V = 120 V
We need to find the current flowing through it. We know that, Power is given by :

I is the electric current

So, the current is 0.625 A.
Answer with Explanation:
The modulus of elasticity has an profound effect on the mechanical design of any machine part as explained below:
1) Effect on the stiffness of the member: The ability of any member of a machine to resist any force depends on the stiffness of the member. For a member with large modulus of elasticity the stiffness is more and hence in cases when the member has to resist a direct load the member with more modulus of elasticity resists the force better.
2)Effect on the deflection of the member: The deflection caused by a force in a member is inversely proportional to the modulus of elasticity of the member thus in machine parts in which we need to resist the deflections caused by the load we can use materials with greater modulus of elasticity.
3) Effect to resistance of shear and torque: Modulus of rigidity of a material is found to be larger if the modulus of elasticity of the material is more hence for a material with larger modulus of elasticity the resistance it offer's to shear forces and the torques is more.
While designing a machine element since the above factors are important to consider thus we conclude that modulus of elasticity has a profound impact on machine design.