Gravity pulls mass towards its center, therefore as matter is pulled towards a source of gravity it will naturally coalesce into a ball as matter competes to head towards the source of gravity.
The pH of a neutral aqueous solution at 37°C is 6.8.
<h3>What is Kw? </h3>
Kw is defined as the dissociation, which is also known as self-ionization, constant of water. this is an equilibrium constant, and its expression is:
Kw = [OH⁻] . [H₃O⁺]
Neutral pH determines that the concentrations of OH⁻ and H₃O⁺ are equal.
<h3>Calculation</h3>
Let us suppose concentration of OH and H₃O⁺ is x, to calculate it:
Kw =[OH⁻] . [H₃O⁺] = x²
x² = 2.4 × 10⁻¹⁴ M²
x = 1.5919 × 10⁻⁷ M
Hence, the concentration of OH and H₃O⁺ (x) = [H₃O⁺] = [OH⁻] = 1.5919×10⁻⁷ M
pH = -log[H₃O⁺] = -log( 1.5919×10⁻⁷ M)
pH = 6.8
Thus, we find that the pH of a neutral aqueous solution at 37 °c (which is the normal human body temperature) is 6.8.
learn more about pH:
brainly.com/question/9529394
#SPJ4
Answer: The net ionic equation will be as follows.

Explanation:
The chemical equation for the given reaction is as follows.

We know that a strong acid or base will dissociate completely into a solvent whereas a weak acid or base dissociates partially into the solvent. Hence, the ionic equation will be as follows.
Now, we will cancel the spectator ions from the above equation. Therefore, the net ionic equation will be as follows.

or,
A. Decomposing water requires a high activation energy.
Explanation:
In decomposing water to release hydrogen gas to make fuel cells, the process requires a very high activation energy.
2H₂O ⇆ 2H₂ + O₂
This is the overall reaction. O-H must be broken to release free hydrogen to produce hydrogen gas.
The O-H bond is a very strong force of attraction that requires a high activation energy to overcome.
- The activation energy is the energy barrier that must be overcome before a reaction takes place.
- The sun is a renewable source of energy.
- Water decomposition produces useful oxygen gas needed by all life for cellular respiration.
Learn more:
Source of energy brainly.com/question/2948717
#learnwithBrainly