Answer:
Boiling water breaks intermolecular attractions and electrolysis breaks covalent bonds.
Explanation:
When water boils, hydrogen bonds are broken between adjacent water molecules. The hydrogen bond is an intermolecular bond between adjacent oxygen and hydrogen atoms of water molecules.
During electrolysis, water dissociates in the presence of electric current. Here, ions are formed in the process. Therefore, covalent bonds are broken here.
The temperature stays the same when a solid changes to a liquid because energy is required to break the forces between particles of water therefore changing the state of matter and separating the particles away from each other.
When a liquid boils, the energy is needed by the particles to escape the surface of the liquid and boil. Instead of raising the temperature, the energy goes into the particles' kinetic energy store so it has enough speed to escape the surface of the liquid.
Answer:
The mixture is not in equilibrium, the reaction will shift to the left.
Explanation:
<em>Based on the equilibrium:</em>
<em>Fe³⁺+ HSCN ⇄ FeSCN²⁺ + H⁺</em>
<em>kc = 30 = [FeSCN²⁺] [H⁺] / [Fe³⁺] [HSCN]</em>
Where [] are concentrations at equilibrium. The reaction is in equilibrium when the ratio of concentrations = kc
Q is the same expression than kc but with [] that are not in equilibrium
Replacing:
Q = [10.0M] [1.0M] / [0.1M] [0.1M]
Q = 1000
As Q > kc, the reaction will shift to the left in order to produce Fe³⁺ and HSCN untill Q = Kc
<em>
</em>
<em>
</em>
<em />
Answer:
Hi, I think the D since the moon rotates about once a month and these months have different amounts of days. an example would be February that can have like 28 or 29 in leap year
Explanation: