<em>500 sec</em>
<em>8 min 20 sec</em>
<em>Hi there !</em>
<em />
<em>8 m ................ 1 s </em>
<em>4000 m ........ x s</em>
<em>x = 4000m×1s/8m = 500 sec = 8 min 20 sec</em>
<em />
<em>Good luck ! </em>
There are some more like Time - second (s)
Amount of substance - mole (mole)
Electric current - ampere (A)
Temperature - kelvin (K)
Luminous intensity - candela (cd)
Answer:
you can't go ice skating on it because if it just reached the temp then you need to wait for about 2 hours
Explanation:
An element can be identified by its unique atomic number. When we look in the periodic table, we find that the element with an atomic number of 9292 is uranium. There is only option containing uranium which also confirms the mass number we found. So, the daughter nucleus of the decay is 234^U.
In an alpha decay, a positively charged particle similar to a helium-4 nucleus gets released from the parent nucleus spontaneously. As the composition suggests, an alpha particle consists of two protons and 2 neutrons. The particle does not travel much, but in short range, it carries the most energy.
It's smart to use the thermal energy provided by the radioactive decay to generate electricity. This allows for a stable supply of power without consuming much space which means the saved space can be used for more scientific equipment. The alpha particle, structurally equivalent to the nucleus of a helium atom.
Learn more about nucleus here:
brainly.com/question/23366064
#SPJ4
Answer:
Option c) are perpendicular to the electric field
Explanation:
Equipotential surfaces are perpendicular to the electric field. the electric field lines are projected outwards from the equipotential surface, i.e., the lines of the electric field are at 90
to the equipotential surface.
Equipotential surface are those surfaces that have the same potential at any point on the surface. Thus the potential difference at any point on the surface is zero due to same potential.
Any charge particle on this surface will move in a perpendicular direction to the Coulombian force. No work is done by the force on a particle moving on an equipotential surface.