<span>The bonding found in calcium chloride is i</span>onic bonds.
I hope this helps!
The production of manganese peroxidase (MnP) by Irpex lacteus, purified to electrophoretic homogeneity by acetone precipitation, HiPrep Q and HiPrep Sephacryl S-200 chromatography, was shown to correlate with the decolorization of textile industry wastewater. The MnP was purified 11.0-fold, with an overall yield of 24.3%. The molecular mass of the native enzyme, as determined by gel filtration chromatography, was about 53 kDa. The enzyme was shown to have a molecular mass of 53.2 and 38.3 kDa on SDS-PAGE and MALDI-TOF mass spectrometry, respectively, and an isoelectric point of about 3.7. The enzyme was optimally active at pH 6.0 and between 30 and 40 degrees C. The enzyme efficiently catalyzed the decolorization of various artificial dyes and oxidized Mn (II) to Mn (III) in the presence of H(2)O(2). The absorption spectrum of the enzyme exhibited maxima at 407, 500, and 640 nm. The amino acid sequence of the three tryptic peptides was analyzed by ESI Q-TOF MS/MS spectrometry, and showed low similarity to those of the extracellular peroxidases of other white-rot basidiomycetes.
Explanation:
The net equation will be as follows.
So, we are required to find
for this reaction.
Therefore, steps involved for the above process are as follows.
Step 1: Convert K from solid state to gaseous state
,
= 89 kJ
Step 2: Ionization of gaseous K
,
= 418 KJ
Step 3: Dissociation of
gas into chlorine atom
.
,
= 122 KJ
Step 4: Iozination of chlorine atom.
,
= -349 KJ
Step 5: Add
ion and
ion formed above to get KCl
.
,
= -717 KJ
Now, using Born-Haber cycle, value of enthalpy of the formation is calculated as follows.
= 89 + 418 + 122 - 349 - 717
= - 437 KJ/mol
Thus, we can conclude that the heat of formation of KCl is - 437 KJ/mol.
As temperatures increase, additional heat energy is applied to the constituent parts of a solid, which causes additional molecular motion. Molecules begin to push against one another and overall volume of a substance increases. When thermal energy is added to a substance, it’s temperature increases.