When you are asked a question like this, you can always ask yourself this question. Can I change it back after this change? For example, if you are burning wood, you cannot bring it back to wood after you burn it, therefore, it is a chemical change. However, if you boil and evaporate water, you can make the water condense again back into its liquid form. In this case, you cannot bring the tomato back to its raw state. Therefore, cooking raw tomatoes is a chemical change.
Answer:
B.
Converted to renewable ones
exhausted or depleted
1. I think it is true?
2. Low melting points
3. True
4. Atomic number, I think it’s periods?
5. Groups?
Sorry, I might not get all of them right :(
Hope this helps you in any way!!
Answer:
1.14 × 10³ mL
Explanation:
Step 1: Given data
- Initial volume of the gas (V₁): 656.0 mL
- Initial pressure of the gas (P₁): 0.884 atm
- Final volume of the gas (V₂): ?
- Final pressure of the gas (P₂): 0.510 atm
Step 2: Calculate the final volume of the gas
If we assume ideal behavior, we can calculate the final volume of the gas using Boyle's law.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁/P₂
V₂ = 0.884 atm × 656.0 mL/0.510 atm = 1.14 × 10³ mL
Answer:
I dont know the answer for that question it's hard question isn't it