Answer:
It is in the state of "thermal arrest"
Explanation:
The temperature stays constant during the phase change process . This is because the matter has more internal energy and heat has to be taken away for the solidification process to begin. The energy that is required for a phase change is know as latent heat (which is the energy released or absorbed by a body during a thermodynamic process).
On point? Do you have any options?
Answer:
pH = 13.09
Explanation:
Zn(OH)2 --> Zn+2 + 2OH- Ksp = 3X10^-15
Zn+2 + 4OH- --> Zn(OH)4-2 Kf = 2X10^15
K = Ksp X Kf
= 3*2*10^-15 * 10^15
= 6
Concentration of OH⁻ = 2[Ba(OH)₂] = 2 * 0.15 = 3 M
Zn(OH)₂ + 2OH⁻(aq) --> Zn(OH)₄²⁻(aq)
Initial: 0 0.3 0
Change: -2x +x
Equilibrium: 0.3 - 2x x
K = Zn(OH)₄²⁻/[OH⁻]²
6 = x/(0.3 - 2x)²
6 = x/(0.3 -2x)(0.3 -2x)
6(0.09 -1.2x + 4x²) = x
0.54 - 7.2x + 24x² = x
24x² - 8.2x + 0.54 = 0
Upon solving as quadratic equation, we obtain;
x = 0.089
Therefore,
Concentration of (OH⁻) = 0.3 - 2x
= 0.3 -(2*0.089)
= 0.122
pOH = -log[OH⁻]
= -log 0.122
= 0.91
pH = 14-0.91
= 13.09
Answer:
Option B. Decreasing the temperature of the solvent
Explanation:
Solubility is mostly enhanced by increasing the temperature of the solvent or solution. This means that am increase in temperature will increase the solubility and decreasing the temperature will decrease the solubility.
The question is incomplete, complete question is :
Determine the pH of an HF solution of each of the following concentrations. In which cases can you not make the simplifying assumption that x is small? (
for HF is
.)
[HF] = 0.280 M
Express your answer to two decimal places.
Answer:
The pH of an 0.280 M HF solution is 1.87.
Explanation:3
Initial concentration if HF = c = 0.280 M
Dissociation constant of the HF = 

Initially
c 0 0
At equilibrium :
(c-x) x x
The expression of disassociation constant is given as:
![K_a=\frac{[H^+][F^-]}{[HF]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH%5E%2B%5D%5BF%5E-%5D%7D%7B%5BHF%5D%7D)


Solving for x, we get:
x = 0.01346 M
So, the concentration of hydrogen ion at equilibrium is :
![[H^+]=x=0.01346 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dx%3D0.01346%20M)
The pH of the solution is ;
![pH=-\log[H^+]=-\log[0.01346 M]=1.87](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D%3D-%5Clog%5B0.01346%20M%5D%3D1.87)
The pH of an 0.280 M HF solution is 1.87.