Answer:
Chemical composition, Temperature, Radial velocity, Size or diameter of the star, Rotation.
Explanation:
Elemental abundances are determined by analyzing the relative strengths of the absorption lines in the spectrum of a star.
The Spectral class to which the star belongs gives the information related to the temperature of the star. It is the spectral lines that determine the spectral class O B A F G K M are the spectral classes.
By measuring the wavelengths of the lines in the star's spectrum gives the radial velocity. Doppler shift is the method used to find the radial velocity.
A star can be classified as a giant or a dwarf . A giant star will have narrow width spectral lines whereas a dwarf star has wider spectral lines.
Broadening of the spectral lines will determine the star's rotation.
(Mass does not affect the pendulum's swing. The longer the length of string, the farther the pendulum falls; and therefore, the longer the period, or back and forth swing of the pendulum. The greater the amplitude, or angle, the farther the pendulum falls; and therefore, the longer the period.)
Answer:
D. 2.5 Hz
Explanation:
Frequency = speed of wave / wavelength
= 335 /140 ( from graph)
= 2.4
The question is asking to describe and state and calculate what do the observer on the earth measure for the speed of the laser beam, and base on my research, the answer would be v = 1bc, I hope you are satisfied with my answer and feel free to ask for more
The correct answer is C. Mercury and Mars have the same gravitational force
Explanation:
This chart compares the different features of two planets in our solar system (Mercury and Mars). In this chart, the only numerical value or feature that is the same for both planets is gravity because for both planets gravity is 1.7 m/s2. This implies the gravitational force or the force that attracts objects towards the center of the planet is the same or that objects are pulled with the same force in both planets. Moreover, this factor depends on others such as mass, density, among others.