Its D and A I just took the quick check
Answer:
During cellular respiration, plants take in carbon dioxide from the air and break down stored glucose.
Explanation:
Before cellular respiration takes place in a plant, photosynthesis occurs and absorbs sunlight and carbon dioxide from the air. The process then produces oxygen and glucose, which are needed as the reactants for cellular respiration. Cellular respiration will break down the stored glucose to make energy to produce carbon dioxide and water. Then the cycle repeats itself.
The standard Gibbs free energy of formation of ZnO from Zn is lower than that of CO2 from CO. Therefore, CO cannot reduce ZnO to Zn. Hence, Zn is not extracted from ZnO through reduction using CO
Answer:
B.) An atom of arsenic has one more valence electron and more electron shells than an atom of silicon, so the conductivity decreases because the arsenic atom loses the electron.
Explanation:
Silicon is located in the 3rd row and 14th column in the periodic table. Arsenic is located in the 4th row and 15th column in the periodic table. This means that arsenic has one more valence electron than silicon. Since arsenic is located one row down from silicon, its valence electrons occupy higher energy orbitals.
Silicon maintains a crystal-like lattice structure. Each silicon atom is covalently connected to assume this shape. When silicon gains one extra electron from arsenic, it experiences n-type doping. This new electron is not tightly bound in the lattice structure. This allows it to move more freely and conduct more electricity. This can also be explained using band gaps. Silicon, which previously had an empty conduction band, now has one electron in this band. This lowers the band gap between the conduction and valence bands and increases conductivity.