When the thermal energy of the air around a fire is transferred to the surrounding air A. The thermal energy is spread out by the surrounding air.
Thermal energy transfers occur in 3 approaches conduction, convection, and radiation. whilst thermal power is transferred among neighboring molecules that are in touch with each other, which is referred to as conduction.
Thermal strength refers to the power contained inside a system that is liable for its temperature. heat is the go with the flow of thermal electricity. an entire department of physics, thermodynamics, offers how heat is transferred among exceptional systems and how work is accomplished in the manner.
Thermal strength also referred to as heat strength is produced when a rise in temperature reasons atoms and molecules to transport quicker and collide with each other. The energy that comes from the temperature of the heated substance is referred to as thermal strength.
Learn more about Thermal energy here:-brainly.com/question/19666326
#SPJ9
D.10.0 mol is the correct
Answer:
Mass of carbon dioxide produced = 52.8 g
Explanation:
Given data:
Mass of carbon react = 14.4 g
Mass of oxygen = 56.5 g
Mass of oxygen left = 18.1 g
Mass of carbon dioxide produced = ?
Solution:
C + O₂ → CO₂
Number of moles of C:
Number of moles = mass/ molar mass
Number of moles = 14.4 g/ 12 g/mol
Number of moles = 1.2 mol
18.1 g of oxygen left it means carbon is limiting reactant.
Now we will compare the moles of C with CO₂.
C : CO₂
1 : 1
1.2 : 1.2
Mass of CO₂:
Mass = number of moles × molar mass
Mass = 1.2 mol × 44 g/mol
Mass = 52.8 g
Answer:

Explanation:
Hello there!
Unfortunately, the question is not given in the question; however, it is possible for us to compute the equilibrium constant as the problem is providing the concentrations at equilibrium. Thus, we first set up the equilibrium expression as products/reactants:
![K=\frac{[NO_2]^2}{[NO]^2[O_2]}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BNO_2%5D%5E2%7D%7B%5BNO%5D%5E2%5BO_2%5D%7D)
Then, we plug in the concentrations at equilibrium to obtain the equilibrium constant as follows:

In addition, we can infer this is a reaction that predominantly tends to the product (NO2) as K>>>>1.
Best regards!