Answer:
THE VOLUME OF THE NITROGEN GAS AT 2.5 MOLES , 1.75 ATM AND 475 K IS 55.64 L
Explanation:
Using the ideal gas equation
PV = nRT
P = 1.75 atm
n = 2.5 moles
T = 475 K
R = 0.082 L atm/mol K
V = unknown
Substituting the variables into the equation we have:
V = nRT / P
V = 2.5 * 0.082 * 475 / 1.75
V = 97.375 / 1.75
V = 55.64 L
The volume of the 2.5 moles of nitrogen gas exerted by 1.75 atm at 475 K is 55.64 L
Remember that:
number of moles = mass/molar mass
First, we get the molar mass of the nitrogen gas molecule:
It is known the the nitrogen gas is composed of two nitrogen atoms, each with molar mass 14 gm (from the periodic table)
Therefore, molar mass of nitrogen gas = 14 x 2 = 28 gm
Second we calculate the mass of the precipitate:
we have number of moles = 0.03 moles (given)
and molar mass = 28 gm (calculated)
Using the equation mentioned before,
mass = number of moles x molar mass = 0.03 x 28 = 0.84 gm
Answer:
Gas X
Explanation:
The given reaction can be written in the form of chemical equation as shown below as:

According to law of conservation of mass, the moles of each substance in the reaction must be equal on both reactant and product side.
Also, the question asks for the gas which is diatomic.
cannot be diatomic as the formula contains 3 atoms.
Between gas X and gas Y , <u>X has to be diatomic for the reaction to balance </u>as:

Answer:
Explanation:Artificial selection is distinct from natural selection in that it describes selection applied by humans in order to produce genetic change. When artificial selection is imposed, the trait or traits being selected are known, whereas with natural selection they have to be inferred. In most circumstances and unless otherwise qualified, directional selection is applied, i.e., only high-scoring individuals are favored for a quantitative trait. Artificial selection is the basic method of genetic improvement programs for crop plants or livestock (see Selective Breeding). It is also used as a tool in the laboratory to investigate the genetic properties of a trait in a species or population, for example, the magnitude of genetic variance or heritability, the possible duration of and limits to selection, and the correlations among traits, including with fitness.
Answer:
Buffer B has the highest buffer capacity.
Buffer C has the lowest buffer capacity.
Explanation:
An effective weak acid-conjugate base buffer should have pH equal to
of the weak acid. For buffers with the same pH, higher the concentrations of the components in a buffer, higher will the buffer capacity.
Acetic acid is a weak acid and
is the conjugate base So, all the given buffers are weak acid-conjugate base buffers. The pH of these buffers are expressed as (Henderson-Hasselbalch):
![pH=pK_{a}(CH_{3}COOH)+log\frac{[CH_{3}COO^{-}]}{[CH_{3}COOH]}](https://tex.z-dn.net/?f=pH%3DpK_%7Ba%7D%28CH_%7B3%7DCOOH%29%2Blog%5Cfrac%7B%5BCH_%7B3%7DCOO%5E%7B-%7D%5D%7D%7B%5BCH_%7B3%7DCOOH%5D%7D)

Buffer A: 
Buffer B: 
Buffer C: 
So, both buffer A and buffer B has same pH value which is also equal to
. Buffer B has higher concentrations of the components as compared to buffer A, Hence, buffer B has the highest buffer capacity.
The pH of buffer C is far away from
. Therefore, buffer C has the lowest buffer capacity.