<u>Given:</u>
Change in internal energy = ΔU = -5084.1 kJ
Change in enthalpy = ΔH = -5074.3 kJ
<u>To determine:</u>
The work done, W
<u>Explanation:</u>
Based on the first law of thermodynamics,
ΔH = ΔU + PΔV
the work done by a gas is given as:
W = -PΔV
Therefore:
ΔH = ΔU - W
W = ΔU-ΔH = -5084.1 -(-5074.3) = -9.8 kJ
Ans: Work done is -9.8 kJ
Answer: Attractive forces between particels
Explanation:
Answer:
Shield Volcano . I've been their before
Explanation:
It would be CH2! you’re just simplifying C4H8, 4 can go into C4 1 time (so we just say C) and 4 can go into H8 2 times (H2)
Unfortunately, you failed to include the table 1 from which the molar heat capacity of aluminum could have been obtained. However, as a general rule, the heat needed to raise the temperature of a certain substance by certain degrees is calculated through the equation,
H = mcpdT
where H is heat, m is mass, cp is specific heat capacity, and dT is change in temperature. From a reliable source, cp for aluminum is equal to 0.215 cal/g°C. Substituting this to the equation,
H = (260.5 g)(0.215 cal/g°C)(125°C - 0)
H = 7000.94 cal